forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lsgan_dcgan-archi_lr1e-3-1xb128-12Mimgs_celeba-cropped-64x64.py
57 lines (51 loc) · 1.57 KB
/
lsgan_dcgan-archi_lr1e-3-1xb128-12Mimgs_celeba-cropped-64x64.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
_base_ = [
'../_base_/models/dcgan/base_dcgan_64x64.py',
'../_base_/datasets/unconditional_imgs_64x64.py',
'../_base_/gen_default_runtime.py'
]
model = dict(type='LSGAN')
total_iters = 100000
disc_step = 1
train_cfg = dict(max_iters=total_iters * disc_step)
# define dataset
# batch_size and data_root must be set
batch_size = 128
data_root = './data/celeba-cropped/cropped_images_aligned_png/'
train_dataloader = dict(
batch_size=batch_size, dataset=dict(data_root=data_root))
val_dataloader = dict(batch_size=batch_size, dataset=dict(data_root=data_root))
test_dataloader = dict(
batch_size=batch_size, dataset=dict(data_root=data_root))
optim_wrapper = dict(
generator=dict(optimizer=dict(type='Adam', lr=0.001, betas=(0.5, 0.99))),
discriminator=dict(
optimizer=dict(type='Adam', lr=0.001, betas=(0.5, 0.99))))
# VIS_HOOK
custom_hooks = [
dict(
type='VisualizationHook',
interval=5000,
fixed_input=True,
vis_kwargs_list=dict(type='GAN', name='fake_img'))
]
default_hooks = dict(
checkpoint=dict(
save_best=['FID-Full-50k/fid', 'IS-50k/is'], rule=['less', 'greater']))
# METRICS
metrics = [
dict(
type='InceptionScore',
prefix='IS-50k',
fake_nums=50000,
inception_style='StyleGAN',
sample_model='orig'),
dict(
type='FrechetInceptionDistance',
prefix='FID-50k',
real_nums=50000,
fake_nums=50000,
inception_style='StyleGAN',
sample_model='orig')
]
val_evaluator = dict(metrics=metrics)
test_evaluator = dict(metrics=metrics)