forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcain_g1b32_1xb5_vimeo90k-triplet.py
158 lines (143 loc) · 4.04 KB
/
cain_g1b32_1xb5_vimeo90k-triplet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
_base_ = '../_base_/default_runtime.py'
experiment_name = 'cain_g1b32_1xb5_vimeo90k-triplet'
work_dir = f'./work_dirs/{experiment_name}'
save_dir = './work_dirs'
# model settings
model = dict(
type='CAIN',
generator=dict(type='CAINNet'),
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'),
train_cfg=dict(),
test_cfg=dict(),
required_frames=2,
step_frames=1,
init_cfg=None,
data_preprocessor=dict(
type='DataPreprocessor',
pad_mode='reflect',
))
train_pipeline = [
dict(
type='LoadImageFromFile',
key='img',
channel_order='rgb',
imdecode_backend='pillow'),
dict(
type='LoadImageFromFile',
key='gt',
channel_order='rgb',
imdecode_backend='pillow'),
dict(type='FixedCrop', keys=['img', 'gt'], crop_size=(256, 256)),
dict(
type='Flip',
keys=['img', 'gt'],
flip_ratio=0.5,
direction='horizontal'),
dict(
type='Flip', keys=['img', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(
type='ColorJitter',
keys=['img', 'gt'],
channel_order='rgb',
brightness=0.05,
contrast=0.05,
saturation=0.05,
hue=0.05),
dict(type='TemporalReverse', keys=['img'], reverse_ratio=0.5),
dict(type='PackInputs')
]
val_pipeline = [
dict(
type='LoadImageFromFile',
key='img',
channel_order='rgb',
imdecode_backend='pillow'),
dict(
type='LoadImageFromFile',
key='gt',
channel_order='rgb',
imdecode_backend='pillow'),
dict(type='PackInputs')
]
demo_pipeline = [
dict(
type='LoadImageFromFile',
key='img',
channel_order='rgb',
imdecode_backend='pillow'),
dict(type='PackInputs')
]
# dataset settings
train_dataset_type = 'BasicFramesDataset'
val_dataset_type = 'BasicFramesDataset'
data_root = 'data/vimeo_triplet'
train_dataloader = dict(
num_workers=32,
batch_size=32, # 1 gpu
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=train_dataset_type,
ann_file='tri_trainlist.txt',
metainfo=dict(dataset_type='vimeo90k', task_name='vfi'),
data_root=data_root,
data_prefix=dict(img='sequences', gt='sequences'),
pipeline=train_pipeline,
depth=2,
load_frames_list=dict(img=['im1.png', 'im3.png'], gt=['im2.png'])))
val_dataloader = dict(
num_workers=4,
persistent_workers=False,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=val_dataset_type,
ann_file='tri_testlist.txt',
metainfo=dict(dataset_type='vimeo90k', task_name='vfi'),
data_root=data_root,
data_prefix=dict(img='sequences', gt='sequences'),
pipeline=val_pipeline,
depth=2,
load_frames_list=dict(img=['im1.png', 'im3.png'], gt=['im2.png'])))
test_dataloader = val_dataloader
val_evaluator = [
dict(type='MAE'),
dict(type='PSNR'),
dict(type='SSIM'),
]
test_evaluator = val_evaluator
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=500)
val_cfg = dict(type='MultiValLoop')
test_cfg = dict(type='MultiTestLoop')
# optimizer
optim_wrapper = dict(
constructor='DefaultOptimWrapperConstructor',
type='OptimWrapper',
optimizer=dict(type='Adam', lr=1e-4, betas=(0.9, 0.99)),
)
# learning policy
param_scheduler = dict(
type='ReduceLR',
by_epoch=True,
mode='min',
factor=0.5,
patience=5,
cooldown=0)
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
interval=1,
save_optimizer=True,
by_epoch=True,
out_dir=save_dir,
),
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=100),
sampler_seed=dict(type='DistSamplerSeedHook'),
param_scheduler=dict(
type='ReduceLRSchedulerHook',
by_epoch=True,
interval=1,
val_metric='MAE'),
)
log_processor = dict(type='LogProcessor', by_epoch=True)