forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasicvsr_2xb4_vimeo90k-bd.py
82 lines (73 loc) · 2.49 KB
/
basicvsr_2xb4_vimeo90k-bd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
_base_ = './basicvsr_2xb4_reds4.py'
scale = 4
experiment_name = 'basicvsr_2xb4_vimeo90k-bd'
work_dir = f'./work_dirs/{experiment_name}'
save_dir = './work_dirs'
train_pipeline = [
dict(type='LoadImageFromFile', key='img', channel_order='rgb'),
dict(type='LoadImageFromFile', key='gt', channel_order='rgb'),
dict(type='SetValues', dictionary=dict(scale=scale)),
dict(type='PairedRandomCrop', gt_patch_size=256),
dict(
type='Flip',
keys=['img', 'gt'],
flip_ratio=0.5,
direction='horizontal'),
dict(
type='Flip', keys=['img', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['img', 'gt'], transpose_ratio=0.5),
dict(type='MirrorSequence', keys=['img', 'gt']),
dict(type='PackInputs')
]
val_pipeline = [
dict(type='GenerateSegmentIndices', interval_list=[1]),
dict(type='LoadImageFromFile', key='img', channel_order='rgb'),
dict(type='LoadImageFromFile', key='gt', channel_order='rgb'),
dict(type='PackInputs')
]
demo_pipeline = [
dict(type='GenerateSegmentIndices', interval_list=[1]),
dict(type='LoadImageFromFile', key='img', channel_order='rgb'),
dict(type='PackInputs')
]
data_root = 'data'
file_list = [
'im1.png', 'im2.png', 'im3.png', 'im4.png', 'im5.png', 'im6.png', 'im7.png'
]
train_dataloader = dict(
num_workers=6,
batch_size=4,
persistent_workers=False,
sampler=dict(type='InfiniteSampler', shuffle=True),
dataset=dict(
type='BasicFramesDataset',
metainfo=dict(dataset_type='vimeo90k_seq', task_name='vsr'),
data_root=f'{data_root}/vimeo90k',
data_prefix=dict(img='BDx4', gt='GT'),
ann_file='meta_info_Vimeo90K_train_GT.txt',
depth=2,
num_input_frames=7,
fixed_seq_len=7,
load_frames_list=dict(img=file_list, gt=file_list),
pipeline=train_pipeline))
val_dataloader = dict(
_delete_=True,
num_workers=1,
batch_size=1,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='BasicFramesDataset',
metainfo=dict(dataset_type='vid4', task_name='vsr'),
data_root=f'{data_root}/Vid4',
data_prefix=dict(img='BDx4', gt='GT'),
ann_file='meta_info_Vid4_GT.txt',
depth=1,
pipeline=val_pipeline))
val_evaluator = dict(
type='Evaluator',
metrics=[
dict(type='PSNR', convert_to='Y'),
dict(type='SSIM', convert_to='Y'),
])
find_unused_parameters = True