-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDASP_BERT.py
477 lines (405 loc) · 14.5 KB
/
DASP_BERT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import argparse
import os
import time
from tokenizers.pre_tokenizers import Whitespace
import numpy as np
import igraph as ig
from sklearn.model_selection import StratifiedKFold
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
from tokenizers import Tokenizer
import torch
from tqdm import tqdm
from pmd import compute_probability_Minkowski_distance
from simple_path_tree import simple_path_tree
from utils import get_node_labels, load_data_ori, custom_grid_search_cv
from transformers import (
BertConfig,
BertForMaskedLM,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling,
BertModel,
PreTrainedTokenizerFast,
)
def compute_bert_feats(
graphs,
maxh,
depth,
dataset,
label_type="label",
out_batch_size=512,
epoch=3,
size=64,
layer=4,
head=4,
random_state=42,
save_model=False,
max_length=512,
):
all_labels = {
0: get_node_labels(graphs, label_type=label_type),
}
# generate all simple paths
igraphs = [ig.Graph.from_networkx(g) for g in graphs]
sps = []
for i, g in enumerate(graphs):
# paths_graph = list(dfs_paths_with_depth(g, 0, depth))
# igraph = ig.Graph.from_networkx(g)
paths_graph = [
igraphs[i].get_all_simple_paths(vs, cutoff=depth) for vs in igraphs[i].vs
]
sps.append(paths_graph)
# generate labels, for each deep
for deep in range(1, maxh):
labeledtrees = []
labeledtrees_set = set()
for igraph, graph in zip(igraphs, graphs):
# generate simple path tree encoding
subtrees = simple_path_tree(igraph, graph, deep)
labeledtrees.append(subtrees)
labeledtrees_set.update(subtrees)
labeledtrees_set = sorted(list(labeledtrees_set))
# extend labels
all_labels[deep] = {}
for gid, lt in enumerate(labeledtrees):
all_labels[deep][gid] = np.array([labeledtrees_set.index(t) for t in lt])
# compute node embeddings
all_corpus = []
all_graph_paths = {}
for deep in range(maxh):
graph_label_paths = {}
for gid, graph_sps in enumerate(sps):
graph_label_paths[gid] = {}
all_label_paths = []
for node, sp in enumerate(graph_sps):
graph_label_paths[gid][node] = []
for path in sp:
path_str = ",".join([str(all_labels[deep][gid][n]) for n in path])
graph_label_paths[gid][node].append(path_str)
# sort the simple paths from the same node
graph_label_paths[gid][
node
].sort() # by default, sort by lexicographical order
all_label_paths.append(graph_label_paths[gid][node])
all_corpus.extend(all_label_paths)
all_graph_paths[deep] = graph_label_paths
model_file = f"transformers/{dataset}"
if not os.path.exists(model_file):
os.makedirs(model_file)
model_file = f"{model_file}/bert_K{maxh}_H{depth}_s{size}_l{layer}_h{head}_e{epoch}"
if not os.path.exists(model_file):
print("Training BERT model by MLM 15% ...")
# use BERT to train the model
from datasets import Dataset
from transformers import PreTrainedTokenizerFast
# to dataset
text_corpus = [" ".join(c) for c in all_corpus]
transformer_dataset = Dataset.from_dict({"text": text_corpus})
transformer_dataset = transformer_dataset.train_test_split(
test_size=0.1, seed=42
)
tokenizer_path = f"transformers/tokenizers"
if not os.path.exists(tokenizer_path): # mkdir
os.makedirs(tokenizer_path)
tokenizer_path += f"/tokenizer_{dataset}_K{maxh}_H{depth}.json"
if not os.path.exists(tokenizer_path):
# create tokenizer
tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
tokenizer.pre_tokenizer = Whitespace()
# use word level trainer
token_trainer = WordLevelTrainer(
special_tokens=["[UNK]", "[PAD]", "[CLS]", "[SEP]", "[MASK]"]
)
tokenizer.train_from_iterator(text_corpus, token_trainer)
# save tokenizer
tokenizer.save(tokenizer_path)
tokenizer = PreTrainedTokenizerFast(
tokenizer_file=tokenizer_path,
unk_token="[UNK]",
pad_token="[PAD]",
cls_token="[CLS]",
sep_token="[SEP]",
mask_token="[MASK]",
)
def tokenize_function(examples):
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=max_length,
)
tokenized_dataset = transformer_dataset.map(
tokenize_function, batched=True, num_proc=4
)
# BERTconfig
config = BertConfig(
vocab_size=tokenizer.vocab_size,
hidden_size=size,
num_hidden_layers=layer,
num_attention_heads=head,
max_position_embeddings=max_length,
)
# MLM training
model = BertForMaskedLM(config)
# Training Arguments
out_path = f"transformers/log/{dataset}/model_log"
if not os.path.exists(out_path):
os.makedirs(out_path)
training_args = TrainingArguments(
output_dir=out_path,
per_device_train_batch_size=64, # batch size
per_device_eval_batch_size=64,
num_train_epochs=epoch, # epochs
seed=random_state,
evaluation_strategy="epoch",
overwrite_output_dir=True,
logging_strategy="no",
)
# DataCollator, mask 15% tokens
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm_probability=0.15
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["test"],
data_collator=data_collator,
)
trainer.train()
model = model.bert
if save_model:
model.save_pretrained(model_file)
tokenizer.save_pretrained(model_file)
else:
print(
f"Loading pre-trained BERT model on {dataset} with K={maxh}, H={depth}, size={size}, layer={layer}, head={head}, epoch={epoch}"
)
model = BertModel.from_pretrained(model_file)
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_file)
model.eval()
model.to("cuda")
node_embeddings = []
num_nodes = [len(g.nodes()) for g in graphs]
for deep in range(maxh):
dth_corpus = []
for gid, graph_sps in all_graph_paths[deep].items():
graph_sentences = []
for node, sp in graph_sps.items():
graph_sentences.append(" ".join(sp))
dth_corpus.extend(graph_sentences)
inputs = tokenizer(
dth_corpus,
padding="max_length",
truncation=True,
max_length=max_length,
return_tensors="pt",
)
# compute node embeddings
num_batches = (
int(len(dth_corpus) // out_batch_size + 1)
if len(dth_corpus) % out_batch_size != 0
else int(len(dth_corpus) // out_batch_size)
)
new_embeddings = torch.zeros((0, size))
with torch.no_grad():
model.eval()
inputs = {k: v.to("cuda") for k, v in inputs.items()}
for i in range(num_batches):
batch_inputs = {
k: v[i * out_batch_size : (i + 1) * out_batch_size]
for k, v in inputs.items()
}
outputs = model(**batch_inputs)
embeddings = outputs.last_hidden_state[:, 0, :]
new_embeddings = torch.cat((new_embeddings, embeddings.cpu()), dim=0)
# split the embeddings by graphs
node_embeddings.append(
np.split(new_embeddings.numpy(), np.cumsum(num_nodes)[:-1])
)
return node_embeddings
def main(
dataset,
K,
H,
label_type="label",
data_path="datasets_ori",
gridsearch=True,
crossvalidation=True,
random_state=42,
size=64,
layer=4,
head=4,
epoch=3,
gamma=None,
save_model=False,
out_batch_size=512,
max_length=512,
):
print(
f"Running S2P_transformer_GMM on {dataset} with K={K}, H={H}, size={size}, layer={layer}, head={head}, epoch={epoch}, out_batch_size={out_batch_size}"
)
graphs = load_data_ori(dataset, data_path)
print("loading done.")
start = time.time()
graph_embeds = compute_bert_feats(
graphs,
K,
H,
dataset=dataset,
random_state=random_state,
label_type=label_type,
size=size,
epoch=epoch,
layer=layer,
head=head,
save_model=save_model,
out_batch_size=out_batch_size,
max_length=max_length,
)
distance_matrix = np.zeros((len(graphs), len(graphs)))
for i in tqdm(range(K), desc="computing distance matrix"):
means = []
vars = []
for graph_embed in graph_embeds[i]:
means.append(np.mean(graph_embed, axis=0))
var_temps = np.var(graph_embed, axis=0)
for k in range(len(var_temps)):
if var_temps[k] <= 0.001:
var_temps[k] = 0.001
vars.append(var_temps)
distance_matrix += compute_probability_Minkowski_distance(means, vars)
end = time.time()
print(f"total time: {end - start} s")
if gridsearch:
if gamma is not None:
gammas = gamma
else:
gammas = np.logspace(-6, 1, num=8)
param_grid = [{"C": np.logspace(-3, 3, num=7)}]
else:
gammas = [0.001]
kernel_matrices = []
kernel_params = []
# Generate the full list of kernel matrices from which to select
M = distance_matrix
for ga in gammas:
K = np.exp(-ga * M)
kernel_matrices.append(K)
kernel_params.append(ga)
# kernel_path = OUTPUT_DIR + '/' + ds_name
# sci.savemat("%s/s2p_kernel_%s_maxh_%d_depth_%d.mat"%(kernel_path, ds_name, maxh - 1, depth - 1), mdict={'kernel': kernel_matrices})
# ---------------------------------
# Classification
# ---------------------------------
# Run hyperparameter search if needed
print(
f"Running SVMs, crossvalidation: {crossvalidation}, gridsearch: {gridsearch}."
)
y = np.array([g.graph["label"] for g in graphs])
# Contains accuracy scores for each cross validation step; the
# means of this list will be used later on.
accuracy_scores = []
np.random.seed(random_state)
cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=random_state)
# Hyperparam logging
best_C = []
best_gamma = []
for train_index, test_index in cv.split(kernel_matrices[0], y):
K_train = [K[train_index][:, train_index] for K in kernel_matrices]
K_test = [K[test_index][:, train_index] for K in kernel_matrices]
y_train, y_test = y[train_index], y[test_index]
# Gridsearch
if gridsearch:
gs, best_params = custom_grid_search_cv(
SVC(kernel="precomputed"),
param_grid,
K_train,
y_train,
cv=5,
random_state=random_state,
)
# Store best params
C_ = best_params["params"]["C"]
gamma_ = kernel_params[best_params["K_idx"]]
y_pred = gs.predict(K_test[best_params["K_idx"]])
else:
gs = SVC(C=100, kernel="precomputed").fit(K_train[0], y_train)
y_pred = gs.predict(K_test[0])
gamma_, C_ = gammas[0], 100
best_C.append(C_)
best_gamma.append(gamma_)
accuracy_scores.append(accuracy_score(y_test, y_pred))
if not crossvalidation:
break
# ---------------------------------
# Printing and logging
# ---------------------------------
if crossvalidation:
print(
"Mean 10-fold accuracy: {:2.2f} +- {:2.2f} %".format(
np.mean(accuracy_scores) * 100, np.std(accuracy_scores) * 100
)
)
else:
print("Final accuracy: {:2.3f} %".format(np.mean(accuracy_scores) * 100))
return (
np.mean(accuracy_scores),
np.std(accuracy_scores),
end - start,
)
def arg_parser():
arg_parser = argparse.ArgumentParser()
# DASP parameters
arg_parser.add_argument("--K",
type=int,
default=3,
help="K for simple-path-tree"
)
arg_parser.add_argument(
"--H",
type=int,
default=2,
help="H for simple paths to generate node embeddings",
)
# dataset parameters
arg_parser.add_argument("--data_path", type=str, default="datasets")
arg_parser.add_argument("--dataset", type=str, default="MUTAG")
arg_parser.add_argument("--random_state", type=int, default=42)
arg_parser.add_argument("--gridsearch", type=bool, default=True)
arg_parser.add_argument("--crossvalidation", type=bool, default=True)
arg_parser.add_argument("--label_type", type=str, default="label")
# bert parameters
arg_parser.add_argument("--size", type=int, default=64)
arg_parser.add_argument("--layer", type=int, default=4)
arg_parser.add_argument("--head", type=int, default=4)
arg_parser.add_argument("--epoch", type=int, default=3)
arg_parser.add_argument("--device", type=str, default="1,2,4")
arg_parser.add_argument("--save_model", action="store_true")
# Other bert parameters such as
# batch size: the batch size for training, default is 64
# out_batch_size: the batch size for output, default is 512
# max_length: the max length of the model, default is 512
# Please refer to the default values in the main function.
return arg_parser.parse_args()
if __name__ == "__main__":
args = arg_parser()
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
main(
args.dataset,
args.K,
args.H,
label_type=args.label_type,
data_path=args.data_path,
gridsearch=args.gridsearch,
crossvalidation=args.crossvalidation,
random_state=args.random_state,
size=args.size,
layer=args.layer,
head=args.head,
epoch=args.epoch,
save_model=args.save_model,
)