-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
180 lines (145 loc) · 7.12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from __future__ import print_function, division
import glob, os, sys, pickle, torch, cv2, time, numpy as np
from torch.utils.data import Dataset, DataLoader
from torchvision.utils import save_image
from shutil import copy2
# mystuff
from model import model as mymodel
from databases import SuperDB
from utils import *
from Train_options import Options
def main():
# parse args
global args
args = Options().args
# copy all files from experiment
cwd = os.getcwd()
for ff in glob.glob("*.py"):
copy2(os.path.join(cwd,ff), os.path.join(args.folder,'code'))
# initialise seeds
torch.manual_seed(1000)
torch.cuda.manual_seed(1000)
np.random.seed(1000)
# choose cuda
if args.cuda == 'auto':
import GPUtil as GPU
GPUs = GPU.getGPUs()
idx = [GPUs[j].memoryUsed for j in range(len(GPUs))]
print(idx)
assert min(idx) < 11.0, 'All {} GPUs are in use'.format(len(GPUs))
idx = idx.index(min(idx))
print('Assigning CUDA_VISIBLE_DEVICES={}'.format(idx))
os.environ["CUDA_VISIBLE_DEVICES"] = str(idx)
else:
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.cuda)
# parameters
sigma = float(args.s)
temperature = float(args.t)
gradclip = int(args.gc)
npts = int(args.npts)
bSize = int(args.bSize)
angle = float(args.angle)
flip = eval(str(args.flip))
tight = int(args.tight)
model = mymodel(sigma=sigma,temperature=temperature, gradclip=gradclip, npts=npts, option=args.option, size=args.size, path_to_check=args.checkpoint)
plotkeys = ['input','target','generated']
losskeys = list(model.loss.keys())
# define plotters
global plotter
if not args.visdom:
print('No Visdom')
plotter = None
else:
from torchnet.logger import VisdomPlotLogger, VisdomLogger, VisdomSaver, VisdomTextLogger
experimentsName = str(args.visdom)
plotter = dict.fromkeys(['images','losses'])
plotter['images'] = dict( [ (key, VisdomLogger("images", port=int(args.port), env=experimentsName, opts={'title' : key})) for key in plotkeys ])
plotter['losses'] = dict( [ (key, VisdomPlotLogger("line", port=int(args.port), env=experimentsName,opts={'title': key, 'xlabel' : 'Iteration', 'ylabel' : 'Loss'})) for key in losskeys] )
# prepare average meters
global meters, l_iteration
meterskey = ['batch_time', 'data_time']
meters = dict([(key,AverageMeter()) for key in meterskey])
meters['losses'] = dict([(key,AverageMeter()) for key in losskeys])
l_iteration = float(0.0)
# plot number of parameters
params = sum([p.numel() for p in filter(lambda p: p.requires_grad, model.GEN.parameters())])
print('GEN # trainable parameters: {}'.format(params))
params = sum([p.numel() for p in filter(lambda p: p.requires_grad, model.FAN.parameters())])
print('FAN # trainable parameters: {}'.format(params))
# define data
video_dataset = SuperDB(path=args.data_path,sigma=sigma,size=args.size,flip=flip,angle=angle,tight=tight, db=args.db)
videoloader = DataLoader(video_dataset, batch_size=bSize, shuffle=True, num_workers=int(args.num_workers), pin_memory=True)
print('Number of workers is {:d}, and bSize is {:d}'.format(int(args.num_workers),bSize))
# define optimizers
lr_fan = args.lr_fan
lr_gan = args.lr_gan
print('Using learning rate {} for FAN, and {} for GAN'.format(lr_fan,lr_gan))
optimizerFAN = torch.optim.Adam(model.FAN.parameters(), lr=lr_fan, betas=(0, 0.9), weight_decay=5*1e-4)
schedulerFAN = torch.optim.lr_scheduler.StepLR(optimizerFAN, step_size=args.step_size, gamma=args.gamma)
optimizerGEN = torch.optim.Adam(model.GEN.parameters(), lr=lr_gan, betas=(0, 0.9), weight_decay=5*1e-4)
schedulerGEN = torch.optim.lr_scheduler.StepLR(optimizerGEN, step_size=args.step_size, gamma=args.gamma)
myoptimizers = {'FAN' : optimizerFAN, 'GEN' : optimizerGEN}
# path to save models and images
path_to_model = os.path.join(args.folder,args.file)
# train
for epoch in range(0,80):
schedulerFAN.step()
schedulerGEN.step()
train_epoch(videoloader, model, myoptimizers, epoch, bSize)
model._save(path_to_model,epoch)
def train_epoch(dataloader, model, myoptimizers, epoch, bSize):
itervideo = iter(dataloader)
global l_iteration
log_epoch = {}
end = time.time()
for i in range(0,2500):
# - get data
all_data = next(itervideo,None)
if all_data is None:
itervideo = iter(dataloader)
all_data = next(itervideo, None)
elif all_data['Im'].shape[0] < bSize:
itervideo = iter(dataloader)
all_data = next(itervideo, None)
# - set batch
model._set_batch(all_data)
# - forward
output = model.forward()
# - update parameters
myoptimizers['GEN'].step()
myoptimizers['FAN'].step()
meters['losses']['rec'].update(model.loss['rec'].item(), bSize)
l_iteration = l_iteration + 1
if i % 100 == 0:
# - plot some images
allimgs = None
for (ii,imtmp) in enumerate(all_data['Im'].to('cpu').detach()):
improc = (255*imtmp.permute(1,2,0).numpy()).astype(np.uint8).copy()
x = 4*output['Points'][ii]
for m in range(0,x.shape[0]):
cv2.circle(improc, (int(x[m,0]), int(x[m,1])), 3, (255,0,0),-1)
if allimgs is None:
allimgs = np.expand_dims(improc,axis=0)
else:
allimgs = np.concatenate((allimgs, np.expand_dims(improc,axis=0)))
if plotter is not None:
plotter['images']['input'].log(torch.from_numpy(allimgs).permute(0,3,1,2))
plotter['images']['target'].log(all_data['ImP'].data)
plotter['images']['generated'].log(output['Reconstructed'].cpu().data)
plotter['losses']['rec'].log( l_iteration, model.loss['rec'].item() )
save = torch.nn.functional.interpolate(torch.from_numpy(allimgs/255.0).permute(0,3,1,2),scale_factor=0.25)
save_image(save, args.folder + '/image_{}_{}.png'.format(epoch,i))
log_epoch[i] = model.loss
meters['batch_time'].update(time.time()-end)
end = time.time()
if i % args.print_freq == 0:
mystr = 'Epoch [{}][{}/{}] '.format(epoch, i, len(dataloader))
mystr += 'Time {:.2f} ({:.2f}) '.format(meters['data_time'].val , meters['data_time'].avg )
mystr += ' '.join(['Loss: {:s} {:.3f} ({:.3f}) '.format(k, meters['losses'][k].val , meters['losses'][k].avg ) for k in meters['losses'].keys()])
print( mystr )
with open(args.folder + '/args_' + args.file[0:-8] + '.txt','a') as f:
print( mystr , file=f)
with open(args.folder + '/args_' + args.file[0:-8] + '_' + str(epoch) + '.pkl','wb') as f:
pickle.dump(log_epoch,f)
if __name__ == '__main__':
main()