-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdb_cmd.py
executable file
·558 lines (456 loc) · 22.7 KB
/
db_cmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
#!/usr/bin/python
###################################################################################
# Copyright (c) 2013, Wictor Lund. All rights reserved. #
# Copyright (c) 2013, Åbo Akademi University. All rights reserved. #
# #
# Redistribution and use in source and binary forms, with or without #
# modification, are permitted provided that the following conditions are met: #
# * Redistributions of source code must retain the above copyright #
# notice, this list of conditions and the following disclaimer. #
# * Redistributions in binary form must reproduce the above copyright #
# notice, this list of conditions and the following disclaimer in the #
# documentation and/or other materials provided with the distribution. #
# * Neither the name of the Åbo Akademi University nor the #
# names of its contributors may be used to endorse or promote products #
# derived from this software without specific prior written permission. #
# #
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND #
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED #
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE #
# DISCLAIMED. IN NO EVENT SHALL ÅBO AKADEMI UNIVERSITY BE LIABLE FOR ANY #
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES #
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; #
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND #
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT #
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS #
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #
###################################################################################
def parse_arguments():
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('-a', nargs=1, default=["list"], choices=["list", "list_avgs", "show", "export", "histograms", "list_sq_err", "parameters_in_range", "plot_pairs", "clustring", "top_scores"], help="Action to perform")
parser.add_argument('-e', nargs=1, default=[""], type=str, help="Experiment id argument")
parser.add_argument('-o', nargs=1, default=["db_time_series.csv"], type=str, help="Out file, used for export action")
parser.add_argument('-l', nargs=1, default=[None], type=float, help="Selected load level")
parser.add_argument('-max', nargs=1, default=[0.0], type=float, help="Upper limit selector for range")
parser.add_argument('-min', nargs=1, default=[0.0], type=float, help="Lower limit selector for range")
parser.add_argument('-clusters', nargs=1, default=[2], type=int, help="Number of clusters to create when using kmeans")
parser.add_argument('-c', nargs=1, default=["energy"], choices=["energy", "power", "time"], help="Column selector")
parser.add_argument('-v', nargs=1, default=[0.0], type=float, help="Value selector")
parser.add_argument('-f', nargs=1, default=[None], type=str, help="Database file to operate on", required=True)
args = parser.parse_args()
return {'db_filename' : args.f[0],
'action' : args.a[0],
'experiment_id' : args.e[0],
'output_filename' : args.o[0],
'selected_load' : args.l[0],
'selected_column' : args.c[0],
'max_range' : args.max[0],
'min_range' : args.min[0],
'value' : args.v[0],
'n_clusters' : args.clusters[0]}
def main():
config = parse_arguments()
from sqlalchemy import create_engine
from sqlalchemy import Column, Table, MetaData
from sqlalchemy import String, Integer, Float
from sqlalchemy.orm import sessionmaker, mapper
from sqlalchemy.ext.declarative import declarative_base
from time import sleep
from stat_reader import StatReader
from pprint import PrettyPrinter
engine = create_engine('sqlite:///' + config['db_filename'])
metadata = MetaData(bind=engine)
session = sessionmaker(bind=engine)()
Base = declarative_base(engine)
class ExperimentInfo(Base):
__tablename__ = 'experiment_info'
__table_args__ = { 'autoload':True }
class ExperimentData(Base):
__tablename__ = 'experiment_data'
__table_args__ = { 'autoload':True }
pp = PrettyPrinter(indent=2)
def get_avg_power(exp_id):
ts = list(session.query(ExperimentData).filter_by(experiment_id = exp_id))
avg_power = sum(map(lambda r: r.power, ts)) / len(ts)
return avg_power
def get_n_cpus(r):
return {'0': 1,
'0-1': 2,
'0-2': 3,
'0-3': 4}[r.cpus_online.strip()]
def get_avg_cpus(exp_id):
ts = list(session.query(ExperimentData).filter_by(experiment_id = exp_id))
avg_cpus = float(sum(map(get_n_cpus, ts))) / float(len(ts))
return avg_cpus
def list_experiments():
col_names = ['Exp#', 'Experiment id', 'Scheduler', 'Target load level', 'Start time', 'End time']
col_widths = map(lambda n: len(n), col_names)
col_widths[1] = 36
col_widths[4] = 28
col_widths[5] = 28
print " ".join(map(lambda n: col_names[n].rjust(col_widths[n]), range(len(col_names))))
i = 1
for r in session.query(ExperimentInfo):
lens = iter(col_widths)
exp_n_str = ("%i" % i).ljust(next(lens))
experiment_id_str = str(r.experiment_id).rjust(next(lens))
scheduler_str = str(r.scheduler).rjust(next(lens))
target_load_level_str = str(r.target_load_level).rjust(next(lens))
start_time_str = str(r.start_time).rjust(next(lens))
end_time_str = str(r.end_time).rjust(next(lens))
print experiment_id_str, scheduler_str, target_load_level_str, start_time_str, end_time_str
i += 1
def list_experiment_avgs():
print 'Parameters'
print 'hotplug_in_load_limit'
print 'hotplug_out_load_limit'
print 'hotplug_in_sampling_period and hotplug_out_sampling_period'
print 'up_threshold'
print 'sched_olord_lb_upper_limit'
col_names = ['Experiment id', 'Target load level', 'Avg. Power (W)', 'Est. Energy (J)', 'Total time (s)', 'Avg. CPUs (n)', 'Parameters']
col_widths = map(lambda n: len(n), col_names)
col_widths[0] = 36
col_widths[2] = 13
print " ".join(map(lambda n: col_names[n].rjust(col_widths[n]), range(len(col_names))))
q = session.query(ExperimentInfo)
if config['selected_load'] != None:
q = q.filter_by(target_load_level = config['selected_load'])
q = list(q)
for r in q:
r.avg_power = get_avg_power(r.experiment_id)
r.avg_cpus = get_avg_cpus(r.experiment_id)
r.energy = r.avg_power * r.total_time
q.sort(key=lambda r: r.energy)
i = 1
for r in q:
lens = iter(col_widths)
experiment_id_str = str(r.experiment_id).rjust(next(lens))
target_load_level_str = str(r.target_load_level).rjust(next(lens))
avg_power = get_avg_power(r.experiment_id)
avg_power_str = str(avg_power).ljust(next(lens))
energy = avg_power * r.total_time
energy_str = str(energy).ljust(next(lens))
total_time_str = str(r.total_time).ljust(next(lens))
avg_cpus_str = str(r.avg_cpus).ljust(next(lens))
parameters_str = ' '.join(map(str, [r.hotplug_in_load_limit,
r.hotplug_out_load_limit,
r.hotplug_in_sampling_period,
r.hotplug_out_sampling_period,
r.up_threshold,
r.sched_olord_lb_upper_limit])).ljust(next(lens))
print experiment_id_str, target_load_level_str, avg_power_str, energy_str, total_time_str, avg_cpus_str, parameters_str
i += 1
def show_experiement_props():
r = session.query(ExperimentInfo).filter_by(experiment_id = config['experiment_id']).first()
if r == None:
print "Could not show info about experiment with id \"%s\"" % config['experiment_id']
return
column_names = map(lambda c: str(c).split(".")[1], ExperimentInfo.__table__.columns)
max_col_len = reduce(lambda k, v: max(k, len(v)), column_names, 0)
for c in column_names:
print c.rjust(max_col_len + 1), getattr(r, c, "")
def export_time_series():
q = session.query(ExperimentData).filter_by(experiment_id = config['experiment_id'])
if q.count == 0:
print "Could not find any non-empty time series with experiement id \"%s\"" % config['experiment_id']
return
with open(config['output_filename'], "wb") as f:
print "Exporting data in csv format to file \"%s\"..." % config['output_filename']
from csv import writer as csvwriter
w = csvwriter(f, delimiter=",")
i = 0
for r in q:
w.writerow([r.time, r.voltage, r.current, r.power, r.temperature, r.cpus_online])
i += 1
print "Exported %i samples." % i
print "Row order: time, voltage, current, power, temperature"
def plot_histograms():
from matplotlib.pyplot import bar, show, figure, title, xlabel, plot
from numpy import histogram
def plot_histogram(x, n):
hist, bins = histogram(x, bins = n)
center = (bins[:-1]+bins[1:])/2
width = 0.7*(bins[1]-bins[0])
fig = figure()
bar(center, hist, align = 'center', width = width)
return fig
q = session.query(ExperimentInfo)
if config['selected_load'] != None:
q = q.filter_by(target_load_level = config['selected_load'])
q_query = q
q = list(q)
for r in q:
r.avg_power = get_avg_power(r.experiment_id)
r.energy = r.avg_power * r.total_time
the_sample = q_query \
.filter_by(hotplug_in_load_limit=80) \
.filter_by(hotplug_out_load_limit=10) \
.filter_by(hotplug_in_sampling_period=10) \
.filter_by(hotplug_out_sampling_period=10) \
.filter_by(up_threshold=30) \
.filter_by(sched_olord_lb_upper_limit=80) \
.first()
n = 10
plot_histogram(map(lambda r: r.avg_power, q), n)
plot([the_sample.avg_power]*2, [0,1], color='r')
title("Avg. Power Histogram")
xlabel("Power/W")
plot_histogram(map(lambda r: r.energy, q), n)
plot([the_sample.energy]*2, [0,1], color='r')
title("Energy Histogram")
xlabel("Energy/J")
plot_histogram(map(lambda r: r.total_time, q), n)
plot([the_sample.total_time]*2, [0,1], color='r')
title("Total Time Histogram")
xlabel("Time/s")
show()
def list_sort_sq_error():
print 'Parameters'
print 'hotplug_in_load_limit'
print 'hotplug_out_load_limit'
print 'hotplug_in_sampling_period'
print 'hotplug_out_sampling_period'
print 'up_threshold'
print 'sched_olord_lb_upper_limit'
col_names = ['Experiment id', 'Target load level', 'Avg. Power (W)', 'Est. Energy (J)', 'Total time (s)', 'Parameters']
col_widths = map(lambda n: len(n), col_names)
col_widths[0] = 36
col_widths[2] = 13
print " ".join(map(lambda n: col_names[n].rjust(col_widths[n]), range(len(col_names))))
q = session.query(ExperimentInfo)
if config['selected_load'] != None:
q = q.filter_by(target_load_level = config['selected_load'])
q = list(q)
for r in q:
r.avg_power = get_avg_power(r.experiment_id)
r.energy = r.avg_power * r.total_time
v = {'power': r.avg_power,
'energy': r.energy,
'time': r.total_time}[config['selected_column']]
r.sq_error = (config['value'] - v) ** 2
q.sort(key=lambda r: r.sq_error)
for r in q:
lens = iter(col_widths)
experiment_id_str = str(r.experiment_id).rjust(next(lens))
target_load_level_str = str(r.target_load_level).rjust(next(lens))
avg_power = get_avg_power(r.experiment_id)
avg_power_str = str(avg_power).ljust(next(lens))
energy = avg_power * r.total_time
energy_str = str(energy).ljust(next(lens))
total_time_str = str(r.total_time).ljust(next(lens))
parameters_str = ' '.join(map(str, [r.hotplug_in_load_limit,
r.hotplug_out_load_limit,
r.hotplug_in_sampling_period,
r.hotplug_out_sampling_period,
r.up_threshold,
r.sched_olord_lb_upper_limit])).ljust(next(lens))
print experiment_id_str, target_load_level_str, avg_power_str, energy_str, total_time_str, parameters_str
def list_parameters_in_range():
print 'Parameters'
print 'hotplug_in_load_limit'
print 'hotplug_out_load_limit'
print 'hotplug_in_sampling_period'
print 'hotplug_out_sampling_period'
print 'up_threshold'
print 'sched_olord_lb_upper_limit'
col_names = ['Experiment id', 'Target load level', 'Avg. Power (W)', 'Est. Energy (J)', 'Total time (s)', 'Parameters']
col_widths = map(lambda n: len(n), col_names)
col_widths[0] = 36
col_widths[2] = 13
print " ".join(map(lambda n: col_names[n].rjust(col_widths[n]), range(len(col_names))))
q = session.query(ExperimentInfo)
if config['selected_load'] != None:
q = q.filter_by(target_load_level = config['selected_load'])
q = list(q)
for r in q:
r.avg_power = get_avg_power(r.experiment_id)
r.energy = r.avg_power * r.total_time
key_fn = {'power': lambda r: r.avg_power,
'energy': lambda r: r.energy,
'time': lambda r: r.total_time}[config['selected_column']]
q.sort(key=key_fn)
q = filter(lambda r: key_fn(r) >= config['min_range'] and key_fn(r) <= config['max_range'], q)
for r in q:
lens = iter(col_widths)
experiment_id_str = str(r.experiment_id).rjust(next(lens))
target_load_level_str = str(r.target_load_level).rjust(next(lens))
avg_power = get_avg_power(r.experiment_id)
avg_power_str = str(avg_power).ljust(next(lens))
energy = avg_power * r.total_time
energy_str = str(energy).ljust(next(lens))
total_time_str = str(r.total_time).ljust(next(lens))
parameters_str = ' '.join(map(str, [r.hotplug_in_load_limit,
r.hotplug_out_load_limit,
r.hotplug_in_sampling_period,
r.hotplug_out_sampling_period,
r.up_threshold,
r.sched_olord_lb_upper_limit])).ljust(next(lens))
print experiment_id_str, target_load_level_str, avg_power_str, energy_str, total_time_str, parameters_str
def plot_pairs():
from numpy import array
from pandas import DataFrame
from pandas.tools.plotting import scatter_matrix
from csv import writer as csvwriter
import matplotlib.pyplot as plt
from subprocess import call
q = session.query(ExperimentInfo)
if config['selected_load'] != None:
q = q.filter_by(target_load_level = config['selected_load'])
q = list(q)
data = []
for r in q:
r.avg_power = get_avg_power(r.experiment_id)
r.energy = r.avg_power * r.total_time
r.the_class = 'bad'
r.target_load_level = float(r.target_load_level)
# ts = list(session.query(ExperimentData).filter_by(experiment_id = r.experiment_id))
# for t in ts:
# data.append([t.power,
# get_n_cpus(t),
# float(r.target_load_level),
# r.up_threshold])
get_key_fn = lambda l: {'power': lambda r: ((l - r.target_load_level)**2, r.avg_power),
'energy': lambda r: ((l - r.target_load_level)**2, r.energy),
'time': lambda r: ((l - r.target_load_level)**2, r.total_time)}[config['selected_column']]
for l in [0.2, 0.4, 0.6, 0.8]:
q.sort(key=get_key_fn(l))
for i in range(10):
q[i].the_class = 'good'
for i in range(len(q)):
r = q[i]
data.append([r.energy,
r.avg_power,
r.total_time,
r.hotplug_in_load_limit,
r.hotplug_out_load_limit,
r.hotplug_in_sampling_period,
r.up_threshold,
r.the_class
])
data.reverse() # Reverse plotting order in R
out_data_file = "/tmp/asd.csv"
out_code_file = "/tmp/asd2.r"
out_pdf_file = "/tmp/asd.pdf" if (config['selected_load'] == None) else ("/tmp/asd-%f.pdf" % config['selected_load'])
r_code = \
"""
d <- read.csv("%s")
pdf("%s")
pairs(d[,1:6] ,pch=19,col=c("red","blue")[unclass(d$c)])
""" % (out_data_file, out_pdf_file)
# data = map(lambda r: [r.energy,
# r.avg_power,
# r.total_time,
# # float(r.target_load_level),
# r.hotplug_in_load_limit,
# r.hotplug_out_load_limit,
# # r.hotplug_in_sampling_period,
# # r.hotplug_out_sampling_period,
# r.up_threshold,
# # r.sched_olord_lb_upper_limit,
# ], q)
cols = ['energy',
'avg. power',
'total time',
# 'target load level',
'hotplug in load limit',
'hotplug out load limit',
'hotplug sampling period',
# 'hotplug in sampling period',
# 'hotplug out sampling period',
'up threshold',
'class'
# 'sched olord lb upper limit',
]
# cols = ['power',
# 'cpus online',
# 'target load level',
# 'up threshold']
cols = map(lambda s: ''.join(map(lambda q: q[0], s.split(" "))), cols)
with open(out_data_file, "wb") as f:
w = csvwriter(f)
w.writerow(cols)
for r in data:
w.writerow(r)
with open(out_code_file, "wb") as f:
f.write(r_code)
call(["R", '-f', out_code_file])
def clustring():
from scipy.cluster.vq import kmeans
from numpy import array
q = session.query(ExperimentInfo)
if config['selected_load'] != None:
q = q.filter_by(target_load_level = config['selected_load'])
q = list(q)
data = []
for r in q:
r.avg_power = get_avg_power(r.experiment_id)
r.energy = r.avg_power * r.total_time
data.append([r.energy,
r.hotplug_in_load_limit,
r.hotplug_out_load_limit,
r.hotplug_in_sampling_period,
r.hotplug_out_sampling_period,
r.up_threshold,
r.sched_olord_lb_upper_limit,
])
data = array(data)
c, _ = kmeans(data, config['n_clusters'])
print "Centriods:"
print c
# df = DataFrame(data[:10], columns = cols)
# axes1 = scatter_matrix(df, alpha=0.2)
# df = DataFrame(data[10:], columns = cols)
# axes2 = scatter_matrix(df, alpha=0.2, marker='x')
# plt.tight_layout()
# plt.show()
def calc_top_scores():
q = session.query(ExperimentInfo)
key_fn = {'power': lambda r: r.avg_power,
'energy': lambda r: r.energy,
'time': lambda r: r.total_time}[config['selected_column']]
scores = {}
for l in [0.2, 0.4, 0.6, 0.8]:
print "Calculating scores for load level %f..." % l
the_q = list(q.filter_by(target_load_level = l))
for r in q:
r.avg_power = get_avg_power(r.experiment_id)
r.energy = r.avg_power * r.total_time
the_q.sort(key=key_fn)
for i in range(10):
score = 10 - i
e = the_q[i]
k_str = '%i-%i-%i-%i' % (e.hotplug_in_load_limit,
e.hotplug_out_load_limit,
e.hotplug_in_sampling_period,
e.up_threshold)
if k_str in scores:
scores[k_str] += score
else:
scores[k_str] = score
scores = scores.items()
scores.sort(key=lambda x: x[1])
for s in scores:
print s[0], s[1]
if config["action"] == "list":
list_experiments()
elif config["action"] == "list_avgs":
list_experiment_avgs()
elif config["action"] == "show":
show_experiement_props()
elif config["action"] == "export":
export_time_series()
elif config["action"] == "histograms":
plot_histograms()
elif config["action"] == "list_sq_err":
list_sort_sq_error()
elif config["action"] == "parameters_in_range":
list_parameters_in_range()
elif config["action"] == "plot_pairs":
plot_pairs()
elif config["action"] == "clustring":
clustring()
elif config["action"] == "top_scores":
calc_top_scores()
if __name__ == '__main__':
main()