diff --git a/A_agg.txt b/TS_bfast_Amtsvenn_esanchez/A_agg.txt similarity index 100% rename from A_agg.txt rename to TS_bfast_Amtsvenn_esanchez/A_agg.txt diff --git a/B_agg.txt b/TS_bfast_Amtsvenn_esanchez/B_agg.txt similarity index 100% rename from B_agg.txt rename to TS_bfast_Amtsvenn_esanchez/B_agg.txt diff --git a/C_agg.txt b/TS_bfast_Amtsvenn_esanchez/C_agg.txt similarity index 100% rename from C_agg.txt rename to TS_bfast_Amtsvenn_esanchez/C_agg.txt diff --git a/LSat_dataCD.R b/TS_bfast_Amtsvenn_esanchez/LSat_dataCD.R similarity index 86% rename from LSat_dataCD.R rename to TS_bfast_Amtsvenn_esanchez/LSat_dataCD.R index b412335..5f2ada3 100644 --- a/LSat_dataCD.R +++ b/TS_bfast_Amtsvenn_esanchez/LSat_dataCD.R @@ -15,11 +15,11 @@ setwd("~/R/Projects/Landsat_AV/data") #________Load and prepare data_______________ -# A <- read.csv("AV_L_clip.csv") -# B <- read.csv("L_AV_Bog_new.csv") -# C <- read.csv("L_AV_bog_plotR_new.csv") -# -# A <- subset (A, select = -c(3,5,6)) +A <- read.csv("AV_L_clip.csv") +B <- read.csv("L_AV_Bog_new.csv") +C <- read.csv("L_AV_bog_plotR_new.csv") + +A <- subset (A, select = -c(3,5,6)) data.prep <- function(a){ @@ -49,9 +49,9 @@ data.prep <- function(a){ return(a) } -# A <- data.prep(A) -# B <- data.prep(B) -# C <- data.prep(C) +A <- data.prep(A) +B <- data.prep(B) +C <- data.prep(C) # Dates and coordinates @@ -64,10 +64,21 @@ Bcoordinates <- unique(B$coordinates) Cdates <- unique(C$date) Ccoordinates <- unique(C$coordinates) -# -A_agg <- read.table("/A_agg.txt", sep = ";", dec = ".", header = T) -B_agg <- read.table("/B_agg.txt", sep = ";", dec = ".", header = T) -C_agg <- read.table("/C_agg.txt", sep = ";", dec = ".", header = T) + +#'*If loading the aggregated subsets: * +# A_agg <- read.table("/A_agg.txt", sep = ";", dec = ".", header = T) +# B_agg <- read.table("/B_agg.txt", sep = ";", dec = ".", header = T) +# C_agg <- read.table("/C_agg.txt", sep = ";", dec = ".", header = T) +# +# Adates <- unique(A_agg$date) +# Acoordinates <- unique(A_agg$coordinates) +# +# Bdates <- unique(B_agg$date) +# Bcoordinates <- unique(B_agg$coordinates) +# +# Cdates <- unique(C_agg$date) +# Ccoordinates <- unique(C_agg$coordinates) + # Aggregate A_agg <- aggregate.data.frame(A, by = list(A$date), FUN = median) diff --git a/MonthRegCD.R b/TS_bfast_Amtsvenn_esanchez/MonthRegCD.R similarity index 100% rename from MonthRegCD.R rename to TS_bfast_Amtsvenn_esanchez/MonthRegCD.R diff --git a/TS_bfast_Amtsvenn_esanchez/README.txt b/TS_bfast_Amtsvenn_esanchez/README.txt new file mode 100644 index 0000000..bcc1131 --- /dev/null +++ b/TS_bfast_Amtsvenn_esanchez/README.txt @@ -0,0 +1,17 @@ +L_Sat_dataCD: +Loading of all the required packages as well as preparing the data for the analysis. + +Time_SeriesCD: +Quarterly and Monthly time series analysis as well as for one month yearly. + +MonthRegCD: +Calculation and presentation of change intensities by month. + + +To get the full data as well as the hyperspectral measurements vistit: +https://uni-muenster.sciebo.de/s/bW0QtZmXvgSJdYo + + + +Landsat data was retrieved via Google Earth Engine and hyperspectral field measurements performed by Emilio Sanchez. + diff --git a/Time_seriesCD.R b/TS_bfast_Amtsvenn_esanchez/Time_seriesCD.R similarity index 100% rename from Time_seriesCD.R rename to TS_bfast_Amtsvenn_esanchez/Time_seriesCD.R