-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain-as-uniformity.py
111 lines (97 loc) · 4.34 KB
/
train-as-uniformity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
import os
import pytorch_lightning as pl
import torch
import yaml
from pytorch_lightning.loggers import WandbLogger
from datautils import MyCIFAR10DataModule
from models.as_uniformity import ASUniformityTraining
import utils
if __name__ == "__main__":
config_parser = argparse.ArgumentParser(description='Training Config', add_help=False)
config_parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
help='YAML config file specifying default arguments')
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--name', type=str, default='')
parser.add_argument('--group', type=str, default='as-uniformity')
parser.add_argument('--notes', type=str, default='')
parser.add_argument('--tags', type=str, nargs='*', default=[])
parser.add_argument('--nologger', action='store_true', default=False)
parser.add_argument('--resume_id', default=os.environ.get('JOB_UUID', ''))
parser.add_argument('--tmp', action='store_true', default=False)
parser.add_argument('--no_resume', dest='resume', action='store_false', default=True)
parser.add_argument('--test', action='store_true', default=False)
parser.add_argument('--meta_steps', type=int, default=int(1e5))
parser.add_argument('--encoder_learning_rate', type=float, default=1e-3)
parser.add_argument('--ckpt', type=str, default='')
parser.add_argument('--save_step_frequency', type=int, default=100)
parser.add_argument('--save_dir', type=str, default='')
parser.add_argument('--noise', type=float, default=None)
parser.add_argument('--project_name', type=str, default='task-discovery-repo')
parser.add_argument('--entity', type=str, default='task-discovery')
parser = ASUniformityTraining.add_model_specific_args(parser)
parser = pl.Trainer.add_argparse_args(parser)
parser = MyCIFAR10DataModule.add_argparse_args(parser)
parser.set_defaults(num_sanity_val_steps=1)
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
utils.set_seeds(args.seed)
SAVE_DIR = args.save_dir if not args.tmp else '/tmp/exps/'
if not args.nologger:
name = ('tmp-' if args.tmp else '') + args.name.format(**vars(args))
logger = WandbLogger(
name=name,
project=args.project_name,
entity=args.entity,
save_dir=SAVE_DIR,
tags=['as', 'uniformity'] + args.tags,
group=args.group,
notes=args.notes,
id=args.resume_id,
)
run = logger.experiment
print(f'{run.resumed=}')
checkpoint_callbacks = [
utils.CheckpointEveryNSteps(
save_step_frequency=args.save_step_frequency,
)
]
else:
logger = None
checkpoint_callbacks = None
# check if there is checkpoint from the previous run
ckpt_path = os.path.join(SAVE_DIR, args.project_name, args.resume_id, 'checkpoints', 'checkpoint.ckpt')
if not os.path.exists(ckpt_path):
if logger is not None and run.resumed:
print(f'====> FAILED to find a checkpoint from the previous run: {ckpt_path}')
ckpt_path = None
if not args.resume:
ckpt_path = None
if args.ckpt and ckpt_path is None:
model = ASUniformityTraining.load_from_checkpoint(args.ckpt, **vars(args))
print(f'====> Loaded from checkpoint: {args.ckpt}')
else:
model = ASUniformityTraining(**vars(args))
trainer = pl.Trainer(
gpus=torch.cuda.device_count(),
logger=logger,
log_every_n_steps=1,
callbacks=checkpoint_callbacks,
max_steps=args.meta_steps,
num_sanity_val_steps=args.num_sanity_val_steps,
check_val_every_n_epoch=args.check_val_every_n_epoch,
val_check_interval=args.val_check_interval,
resume_from_checkpoint=ckpt_path,
)
if not args.test:
trainer.fit(model, ckpt_path=ckpt_path)
trainer.test(model)
else:
trainer.test(model, ckpt_path=ckpt_path)