You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
An input JSON file includes all genomic data files, parameters and metadata for running pipelines. Our pipeline will use default values if they are not defined in an input JSON file. We provide a set of template JSON files: minimum and full. We recommend to use a minimum template instead of full one. A full template includes all parameters of the pipeline with default values defined.
Please read through the following step-by-step instruction to compose a input JSON file.
IMPORTANT: ALWAYS USE ABSOLUTE PATHS.
Pipeline metadata
Parameter
Description
atac.title
Title for experiment which will be shown in a final HTML report
atac.description
Description for experiment which will be shown in a final HTML report
Pipeline parameters
Parameter
Default
Description
atac.pipeline_type
atac
atac for ATAC-seq or dnase for DNase-seq
atac.align_only
false
Peak calling and its downstream analyses will be disabled. Useful if you just want to map your FASTQs into filtered BAMs/TAG-ALIGNs and don't want to call peaks on them.
atac.true_rep_only
false
Disable pseudo replicate generation and all related analyses
Reference genome
All reference genome specific reference files/parameters can be defined in a single TSV file atac.genome_tsv. However, you can also individally define each file/parameter instead of a TSV file. If both a TSV file and individual parameters are defined, then individual parameters will override those defined in a TSV file. For example, if you define both atac.genome_tsv and atac.blacklist, then atac.blacklist will override that is defined in atac.genome_tsv. This is useful when you want to use your own for a specific parameter while keeping all the other parameters same as original.
Parameter
Type
Description
atac.genome_tsv
File
Choose one of the TSV files listed below or build your own
atac.genome_name
String
Name of genome (e.g. hg38, hg19, ...)
atac.ref_fa
File
Reference FASTA file
atac.ref_mito_fa
File
Mito-only reference FASTA file
atac.bowtie2_idx_tar
File
Bowtie2 index TAR file (uncompressed) built from FASTA file
atac.bowtie2_mito_idx_tar
File
Mito-only Bowtie2 index TAR file (uncompressed) built from FASTA file
atac.chrsz
File
2-col chromosome sizes file built from FASTA file with faidx
atac.blacklist
File
BED file. Peaks overlapping these regions will be filtered out
atac.blacklist2
File
Second blacklist. Two blacklist files (atac.blacklist and atac.blacklist2) will be merged.
atac.gensz
String
MACS2's genome sizes (hs for human, mm for mouse or sum of 2nd col in chrsz)
atac.mito_chr_name
String
Name of mitochondrial chromosome (e.g. chrM)
atac.regex_bfilt_peak_chr_name
String
Perl style reg-ex to keep peaks on selected chromosomes only matching with this pattern (default: chr[\dXY]+. This will keep chr1, chr2, ... chrX and chrY in .bfilt. peaks file. chrM is not included here)
Additional annotated genome data:
Parameter
Type
Description
atac.tss
File
TSS file
atac.dnase
File
Open chromatin region file
atac.prom
File
Promoter region file
atac.enh
File
Enhancer region file
atac.reg2map
File
File with cell type signals
atac.reg2map_bed
File
File of regions used to generate reg2map signals
atac.roadmap_meta
File
Roadmap metadata
We assume that users run pipeline with Caper. These TSVs work with Caper only since they have URLs instead of local paths or cloud bucket URIs. Caper will automatically download those URLs to a local temporary directory (caper run ... --tmp-dir).
For DNAnexus Web UI (AWS project): Choose one of the following TSV file on https://platform.DNAnexus.com/projects/BKpvFg00VBPV975PgJ6Q03v6/data/pipeline-genome-data/genome_tsv/v4.
Genome
File name
hg38
hg38.dx.tsv
mm10
mm10.dx.tsv
For DNAnexus Web UI (Azure project): Choose one of the following TSV file on https://platform.DNAnexus.com/projects/F6K911Q9xyfgJ36JFzv03Z5J/data/pipeline-genome-data/genome_tsv/v4.
Find a TSV file on the destination directory and use it for "atac.genome_tsv" in your input JSON.
Input genomic data
Choose endedness of your dataset first.
Parameter
Description
atac.paired_end
Boolean to define endedness for ALL replicates. This will override per-replicate definition in atac.paired_ends
atac.paired_ends
Array of Boolean to define endedness for each replicate
Define atac.paired_end if all replicates in your dataset has the same endedness. You can also individually define endedness for each replicate. For example, rep1, rep2 are PE and rep3 is SE.
{"atac.paired_ends" : [true,true,false]}
Pipeline can start from any of the following data type (FASTQ, BAM, NODUP_BAM and TAG-ALIGN).
Parameter
Description
atac.fastqs_repX_R1
Array of R1 FASTQ files for replicate X. These files will be merged into one FASTQ file for rep X.
atac.fastqs_repX_R2
Array of R2 FASTQ files for replicate X. These files will be merged into one FASTQ file for rep X. Do not define for single ended dataset.
atac.bams
Array of BAM file for each replicate. (e.g. ["rep1.bam", "rep2.bam", ...])
atac.nodup_bams
Array of filtered/deduped BAM file for each replicate.
atac.tas
Array of TAG-ALIGN file for each replicate.
You can mix up different data types for individual replicate. For example, pipeline can start from FASTQs for rep1 and rep3, BAMs for rep2, NODUP_BAMs for rep4 and TAG-ALIGNs for rep5.
If you choose to use auto-detection for adapters, then remove adapter arrays from input JSON. Otherwise define adapters for each FASTQ.
WARNING: Individually defined adapters arrays should have the same dimension as FASTQs.
Parameter
Description
atac.adapter
You can define an adapter sequence for ALL fastqs. If defined, this will override below adapter sequence definition for individual fastqs
atac.adapters_repX_R1
Array of adapter sequences for R1 FASTQs of replicate X
atac.adapters_repX_R2
Array of adapter sequences for R1 FASTQs of replicate X. Do not define it for singled-ended dataset
Optional adapter-trimming parameters
Parameter
Default
Description
atac.auto_detect_adapter
false
You can use auto-detection for adapters. List of adapters can be detected: AGATCGGAAGAGC (Illumina), CTGTCTCTTATA (Nextera) and TGGAATTCTCGG (smallRNA)
Threshold for mapped reads quality (samtools view -q). If not defined, automatically determined according to aligner.
atac.dup_marker
picard
Choose a dup marker between picard and sambamba. picard is recommended, use sambamba only when picard fails.
atac.no_dup_removal
false
Skip dup removal in a BAM filtering stage.
Optional subsampling parameters
Parameter
Default
Description
atac.subsample_reads
0
Subsample reads (0: no subsampling). For PE dataset, this is not a number of read pairs but number of reads. Subsampled reads will be used for all downsteam analyses including peak-calling
atac.xcor_subsample_reads
15000000
Subsample reads for cross-corr. analysis only (0: no subsampling). Subsampled reads will be used for cross-corr. analysis only
Optional peak-calling parameters
Parameter
Default
Description
atac.cap_num_peak
500000
Cap number of peaks called from a peak-caller (MACS2)
atac.pval_thresh
0.01
P-value threshold for MACS2 (macs2 callpeak -p).
atac.smooth_win
150
Size of smoothing window for MACS2 (macs2 callpeak --shift [-smooth_win/2] --extsize [smooth_win]).
atac.enable_idr
true
Enable IDR (irreproducible discovery rate)
atac.idr_thresh
0.05
Threshold for IDR
Optional pipeline flags
Parameter
Default
Description
atac.enable_xcor
false
Enable cross-correlation analysis
atac.enable_count_signal_track
false
Enable count signal track generation
atac.enable_preseq
false
Enable preseq, which performs a yield prediction for reads
atac.enable_jsd
true
Enable deeptools fingerprint (JS distance)
atac.enable_gc_bias
true
Enable GC bias computation
atac.enable_tss_enrich
true
Enable TSS enrichment computation
atac.enable_annot_enrich
true
Enable Annotated region enrichment computation
atac.enable_compare_to_roadmap
false
Enable comparing signals to epigenome roadmap
Optional parameter for TSS enrichment
Our pipeline automatically estimates read length from FASTQs, but atac.read_len will override those estimated ones. You need to define atac.read_len if you start from BAMs and want to get a TSS enrichment plot.
Parameter
Type
Description
atac.read_len
Array[Int]
Read length for each replicate.
Other optional parameters
Parameter
Default
Description
atac.filter_chrs
["chrM", "MT"]
Array of chromosome names to be filtered out from a final (filtered/nodup) BAM. Mitochondrial chromosomes are filtered out by default.
atac.pseudoreplication_random_seed
0
Random seed (positive integer) used for pseudo-replication (shuffling reads in TAG-ALIGN and then split it into two). If 0 then TAG-ALIGN file's size (in bytes) is used for random seed.
WARNING: If your custom genome's mitochondrial chromosome name is different from chrM or MT, then define it correctly here. This parameter has nothing to do with a mito-chromosome name parameter atac.mito_chr_name. Changing atac.mito_chr_name does not affect this parameter.
Resource parameters
WARNING: It is recommened not to change the following parameters unless you get resource-related errors for a certain task and you want to increase resources for such task. The following parameters are provided for users who want to run our pipeline with Caper's local on HPCs and 2).
Resources defined here are PER REPLICATE. Therefore, total number of cores will be approximately atac.align_cpu x NUMBER_OF_REPLICATES because align is a bottlenecking task of the pipeline. Use this total number of cores if you manually qsub or sbatch your job (using local mode of Caper). disk_factor is used for Google Cloud and DNAnexus only.
For example, if sum of your FASTQs are 20GB then 4GB (base) + atac.align_mem_factor x 20GB = 5GB will be used for align task's instance memory.
If sum of your TAG-ALIGN BEDs (intermediate outputs) are 5GB then 4GB (base) + atac.macs2_signal_track_mem_factor x 5GB = 34GB will be used for macs2_signal_track task's instance memory.
Base memory/disk is 4GB/20GB for most tasks.
Parameter
Default
Description
atac.align_cpu
6
atac.align_mem_factor
0.15
Multiplied to size of FASTQs to determine required memory. 5.0 + bowtie2_index_file_size + sum(all_fastqs) GB.
atac.align_time_hr
48
Walltime (HPCs only)
atac.align_disk_factor
8.0
Multiplied to size of FASTQs to determine required disk
Parameter
Default
Description
atac.filter_cpu
4
atac.filter_mem_factor
0.4
Multiplied to size of BAM to determine required memory
atac.filter_time_hr
24
Walltime (HPCs only)
atac.filter_disk_factor
8.0
Multiplied to size of BAM to determine required disk
Parameter
Default
Description
atac.bam2ta_cpu
2
atac.bam2ta_mem_factor
0.3
Multiplied to size of filtered BAM to determine required memory
atac.bam2ta_time_hr
6
Walltime (HPCs only)
atac.bam2ta_disk_factor
4.0
Multiplied to size of filtered BAM to determine required disk
Parameter
Default
Description
atac.spr_mem_factor
20.0
Multiplied to size of filtered BAM to determine required memory
atac.spr_disk_factor
30.0
Multiplied to size of filtered BAM to determine required disk
Parameter
Default
Description
atac.jsd_cpu
4
atac.jsd_mem_factor
0.1
Multiplied to size of filtered BAM to determine required memory
atac.jsd_time_hr
6
Walltime (HPCs only)
atac.jsd_disk_factor
2.0
Multiplied to size of filtered BAM to determine required disk
Parameter
Default
Description
atac.xcor_cpu
2
atac.xcor_mem_factor
1.0
Multiplied to size of TAG-ALIGN BED to determine required memory
atac.xcor_time_hr
6
Walltime (HPCs only)
atac.xcor_disk_factor
4.5
Multiplied to size of TAG-ALIGN BED to determine required disk
Parameter
Default
Description
atac.call_peak_cpu
2
MACS2 is single-threaded. More than 2 is not required.
atac.call_peak_mem_factor
4.0
Multiplied to size of TAG-ALIGN BED to determine required memory
atac.call_peak_time_hr
24
Walltime (HPCs only)
atac.call_peak_disk_factor
30.0
Multiplied to size of TAG-ALIGN BED to determine required disk
Parameter
Default
Description
atac.macs2_signal_track_mem_factor
12.0
Multiplied to size of TAG-ALIGN BED to determine required memory
atac.macs2_signal_track_time_hr
24
Walltime (HPCs only)
atac.macs2_signal_track_disk_factor
80.0
Multiplied to size of TAG-ALIGN BED to determine required disk
Parameter
Default
Description
atac.preseq_mem_factor
0.5
Multiplied to size of BAM to determine required memory
atac.preseq_disk_factor
5.0
Multiplied to size of BAM to determine required disk
If your system/cluster does not allow large memory allocation for Java applications, check the following resource parameters to manually define Java memory. It is NOT RECOMMENDED for most users to change these parameters since pipeline automatically takes 90% of task's memory for Java apps.
There are special parameters to control maximum Java heap memory (e.g. java -Xmx4G) for Java applications (e.g. Picard tools). They are strings including size units. Such string will be directly appended to Java's parameter -Xmx. If these parameters are not defined then pipeline uses 90% of each task's memory.