Skip to content

Latest commit

 

History

History
305 lines (231 loc) · 17 KB

input.md

File metadata and controls

305 lines (231 loc) · 17 KB

Input JSON

An input JSON file includes all genomic data files, parameters and metadata for running pipelines. Our pipeline will use default values if they are not defined in an input JSON file. We provide a set of template JSON files: minimum and full. We recommend to use a minimum template instead of full one. A full template includes all parameters of the pipeline with default values defined.

Please read through the following step-by-step instruction to compose a input JSON file.

IMPORTANT: ALWAYS USE ABSOLUTE PATHS.

Pipeline metadata

Parameter Description
atac.title Title for experiment which will be shown in a final HTML report
atac.description Description for experiment which will be shown in a final HTML report

Pipeline parameters

Parameter Default Description
atac.pipeline_type atac atac for ATAC-seq or dnase for DNase-seq
atac.align_only false Peak calling and its downstream analyses will be disabled. Useful if you just want to map your FASTQs into filtered BAMs/TAG-ALIGNs and don't want to call peaks on them.
atac.true_rep_only false Disable pseudo replicate generation and all related analyses

Reference genome

All reference genome specific reference files/parameters can be defined in a single TSV file atac.genome_tsv. However, you can also individally define each file/parameter instead of a TSV file. If both a TSV file and individual parameters are defined, then individual parameters will override those defined in a TSV file. For example, if you define both atac.genome_tsv and atac.blacklist, then atac.blacklist will override that is defined in atac.genome_tsv. This is useful when you want to use your own for a specific parameter while keeping all the other parameters same as original.

Parameter Type Description
atac.genome_tsv File Choose one of the TSV files listed below or build your own
atac.genome_name String Name of genome (e.g. hg38, hg19, ...)
atac.ref_fa File Reference FASTA file
atac.ref_mito_fa File Mito-only reference FASTA file
atac.bowtie2_idx_tar File Bowtie2 index TAR file (uncompressed) built from FASTA file
atac.bowtie2_mito_idx_tar File Mito-only Bowtie2 index TAR file (uncompressed) built from FASTA file
atac.chrsz File 2-col chromosome sizes file built from FASTA file with faidx
atac.blacklist File BED file. Peaks overlapping these regions will be filtered out
atac.blacklist2 File Second blacklist. Two blacklist files (atac.blacklist and atac.blacklist2) will be merged.
atac.gensz String MACS2's genome sizes (hs for human, mm for mouse or sum of 2nd col in chrsz)
atac.mito_chr_name String Name of mitochondrial chromosome (e.g. chrM)
atac.regex_bfilt_peak_chr_name String Perl style reg-ex to keep peaks on selected chromosomes only matching with this pattern (default: chr[\dXY]+. This will keep chr1, chr2, ... chrX and chrY in .bfilt. peaks file. chrM is not included here)

Additional annotated genome data:

Parameter Type Description
atac.tss File TSS file
atac.dnase File Open chromatin region file
atac.prom File Promoter region file
atac.enh File Enhancer region file
atac.reg2map File File with cell type signals
atac.reg2map_bed File File of regions used to generate reg2map signals
atac.roadmap_meta File Roadmap metadata

We assume that users run pipeline with Caper. These TSVs work with Caper only since they have URLs instead of local paths or cloud bucket URIs. Caper will automatically download those URLs to a local temporary directory (caper run ... --tmp-dir).

We currently provide TSV files for 4 genomes as shown in the below table. You can download/build them on your local computer. You can also build a genome database for your own genome.

Genome URL
hg38 https://storage.googleapis.com/encode-pipeline-genome-data/genome_tsv/v4/hg38.tsv
mm10 https://storage.googleapis.com/encode-pipeline-genome-data/genome_tsv/v4/mm10.tsv

For DNAnexus CLI (AWS project):

Genome DX URI
hg38 dx://project-BKpvFg00VBPV975PgJ6Q03v6:pipeline-genome-data/genome_tsv/v4/hg38.dx.tsv
mm10 dx://project-BKpvFg00VBPV975PgJ6Q03v6:pipeline-genome-data/genome_tsv/v4/mm10.dx.tsv

For DNAnexus CLI (Azure project):

Genome DX URI
hg38 dx://project-F6K911Q9xyfgJ36JFzv03Z5J:pipeline-genome-data/genome_tsv/v4/hg38.dx_azure.tsv
mm10 dx://project-F6K911Q9xyfgJ36JFzv03Z5J:pipeline-genome-data/genome_tsv/v4/mm10.dx_azure.tsv

For DNAnexus Web UI (AWS project): Choose one of the following TSV file on https://platform.DNAnexus.com/projects/BKpvFg00VBPV975PgJ6Q03v6/data/pipeline-genome-data/genome_tsv/v4.

Genome File name
hg38 hg38.dx.tsv
mm10 mm10.dx.tsv

For DNAnexus Web UI (Azure project): Choose one of the following TSV file on https://platform.DNAnexus.com/projects/F6K911Q9xyfgJ36JFzv03Z5J/data/pipeline-genome-data/genome_tsv/v4.

Genome File name
hg38 hg38.dx_azure.tsv
mm10 mm10.dx_azure.tsv

Additional information about each genome:

Genome Source built from
hg38 ENCODE GRCh38_no_alt_analysis_set_GCA_000001405
mm10 ENCODE mm10_no_alt_analysis_set_ENCODE
hg19 UCSC GRCh37/hg19
mm9 UCSC mm9, NCBI Build 37

How to download reference genome

  1. Choose GENOME from hg19, hg38, mm9 and mm10 and specify a destination directory.
    $ bash genome/download_genome_data.sh [GENOME] [DESTINATION_DIR]
  2. Find a TSV file on the destination directory and use it for "atac.genome_tsv" in your input JSON.

Input genomic data

Choose endedness of your dataset first.

Parameter Description
atac.paired_end Boolean to define endedness for ALL replicates. This will override per-replicate definition in atac.paired_ends
atac.paired_ends Array of Boolean to define endedness for each replicate

Define atac.paired_end if all replicates in your dataset has the same endedness. You can also individually define endedness for each replicate. For example, rep1, rep2 are PE and rep3 is SE.

{
    "atac.paired_ends" : [true, true, false]
}

Pipeline can start from any of the following data type (FASTQ, BAM, NODUP_BAM and TAG-ALIGN).

Parameter Description
atac.fastqs_repX_R1 Array of R1 FASTQ files for replicate X. These files will be merged into one FASTQ file for rep X.
atac.fastqs_repX_R2 Array of R2 FASTQ files for replicate X. These files will be merged into one FASTQ file for rep X. Do not define for single ended dataset.
atac.bams Array of BAM file for each replicate. (e.g. ["rep1.bam", "rep2.bam", ...])
atac.nodup_bams Array of filtered/deduped BAM file for each replicate.
atac.tas Array of TAG-ALIGN file for each replicate.

You can mix up different data types for individual replicate. For example, pipeline can start from FASTQs for rep1 and rep3, BAMs for rep2, NODUP_BAMs for rep4 and TAG-ALIGNs for rep5.

{
    "atac.fastqs_rep1_R1" : ["rep1.fastq.gz"],
    "atac.fastqs_rep3_R1" : ["rep3.fastq.gz"],
    "atac.bams" : [null, "rep2.bam", null, null, null],
    "atac.nodup_bams" : [null, null, null, "rep4.nodup.bam", null],
    "atac.tas" : [null, null, null, null, "rep5.tagAlign.gz"]
}

Adapter-trimming for FASTQs

If you choose to use auto-detection for adapters, then remove adapter arrays from input JSON. Otherwise define adapters for each FASTQ.

WARNING: Individually defined adapters arrays should have the same dimension as FASTQs.

Parameter Description
atac.adapter You can define an adapter sequence for ALL fastqs. If defined, this will override below adapter sequence definition for individual fastqs
atac.adapters_repX_R1 Array of adapter sequences for R1 FASTQs of replicate X
atac.adapters_repX_R2 Array of adapter sequences for R1 FASTQs of replicate X. Do not define it for singled-ended dataset

Optional adapter-trimming parameters

Parameter Default Description
atac.auto_detect_adapter false You can use auto-detection for adapters. List of adapters can be detected: AGATCGGAAGAGC (Illumina), CTGTCTCTTATA (Nextera) and TGGAATTCTCGG (smallRNA)
atac.cutadapt_param -e 0.1 -m 5 cutadapt (trim_adapter) parameters (default: min_trim_len=5, err_rate=0.1)

Optional mapping parameters

Parameter Type Default Description
atac.multimapping Int 4 Multimapping reads

Optional filtering parameters

Parameter Default Description
atac.mapq_thresh 30 Threshold for mapped reads quality (samtools view -q). If not defined, automatically determined according to aligner.
atac.dup_marker picard Choose a dup marker between picard and sambamba. picard is recommended, use sambamba only when picard fails.
atac.no_dup_removal false Skip dup removal in a BAM filtering stage.

Optional subsampling parameters

Parameter Default Description
atac.subsample_reads 0 Subsample reads (0: no subsampling). For PE dataset, this is not a number of read pairs but number of reads. Subsampled reads will be used for all downsteam analyses including peak-calling
atac.xcor_subsample_reads 15000000 Subsample reads for cross-corr. analysis only (0: no subsampling). Subsampled reads will be used for cross-corr. analysis only

Optional peak-calling parameters

Parameter Default Description
atac.cap_num_peak 500000 Cap number of peaks called from a peak-caller (MACS2)
atac.pval_thresh 0.01 P-value threshold for MACS2 (macs2 callpeak -p).
atac.smooth_win 150 Size of smoothing window for MACS2 (macs2 callpeak --shift [-smooth_win/2] --extsize [smooth_win]).
atac.enable_idr true Enable IDR (irreproducible discovery rate)
atac.idr_thresh 0.05 Threshold for IDR

Optional pipeline flags

Parameter Default Description
atac.enable_xcor false Enable cross-correlation analysis
atac.enable_count_signal_track false Enable count signal track generation
atac.enable_preseq false Enable preseq, which performs a yield prediction for reads
atac.enable_jsd true Enable deeptools fingerprint (JS distance)
atac.enable_gc_bias true Enable GC bias computation
atac.enable_tss_enrich true Enable TSS enrichment computation
atac.enable_annot_enrich true Enable Annotated region enrichment computation
atac.enable_compare_to_roadmap false Enable comparing signals to epigenome roadmap

Optional parameter for TSS enrichment

Our pipeline automatically estimates read length from FASTQs, but atac.read_len will override those estimated ones. You need to define atac.read_len if you start from BAMs and want to get a TSS enrichment plot.

Parameter Type Description
atac.read_len Array[Int] Read length for each replicate.

Other optional parameters

Parameter Default Description
atac.filter_chrs ["chrM", "MT"] Array of chromosome names to be filtered out from a final (filtered/nodup) BAM. Mitochondrial chromosomes are filtered out by default.
atac.pseudoreplication_random_seed 0 Random seed (positive integer) used for pseudo-replication (shuffling reads in TAG-ALIGN and then split it into two). If 0 then TAG-ALIGN file's size (in bytes) is used for random seed.

WARNING: If your custom genome's mitochondrial chromosome name is different from chrM or MT, then define it correctly here. This parameter has nothing to do with a mito-chromosome name parameter atac.mito_chr_name. Changing atac.mito_chr_name does not affect this parameter.

Resource parameters

WARNING: It is recommened not to change the following parameters unless you get resource-related errors for a certain task and you want to increase resources for such task. The following parameters are provided for users who want to run our pipeline with Caper's local on HPCs and 2).

Resources defined here are PER REPLICATE. Therefore, total number of cores will be approximately atac.align_cpu x NUMBER_OF_REPLICATES because align is a bottlenecking task of the pipeline. Use this total number of cores if you manually qsub or sbatch your job (using local mode of Caper). disk_factor is used for Google Cloud and DNAnexus only.

For example, if sum of your FASTQs are 20GB then 4GB (base) + atac.align_mem_factor x 20GB = 5GB will be used for align task's instance memory.

If sum of your TAG-ALIGN BEDs (intermediate outputs) are 5GB then 4GB (base) + atac.macs2_signal_track_mem_factor x 5GB = 34GB will be used for macs2_signal_track task's instance memory.

Base memory/disk is 4GB/20GB for most tasks.

Parameter Default Description
atac.align_cpu 6
atac.align_mem_factor 0.15 Multiplied to size of FASTQs to determine required memory. 5.0 + bowtie2_index_file_size + sum(all_fastqs) GB.
atac.align_time_hr 48 Walltime (HPCs only)
atac.align_disk_factor 8.0 Multiplied to size of FASTQs to determine required disk
Parameter Default Description
atac.filter_cpu 4
atac.filter_mem_factor 0.4 Multiplied to size of BAM to determine required memory
atac.filter_time_hr 24 Walltime (HPCs only)
atac.filter_disk_factor 8.0 Multiplied to size of BAM to determine required disk
Parameter Default Description
atac.bam2ta_cpu 2
atac.bam2ta_mem_factor 0.3 Multiplied to size of filtered BAM to determine required memory
atac.bam2ta_time_hr 6 Walltime (HPCs only)
atac.bam2ta_disk_factor 4.0 Multiplied to size of filtered BAM to determine required disk
Parameter Default Description
atac.spr_mem_factor 20.0 Multiplied to size of filtered BAM to determine required memory
atac.spr_disk_factor 30.0 Multiplied to size of filtered BAM to determine required disk
Parameter Default Description
atac.jsd_cpu 4
atac.jsd_mem_factor 0.1 Multiplied to size of filtered BAM to determine required memory
atac.jsd_time_hr 6 Walltime (HPCs only)
atac.jsd_disk_factor 2.0 Multiplied to size of filtered BAM to determine required disk
Parameter Default Description
atac.xcor_cpu 2
atac.xcor_mem_factor 1.0 Multiplied to size of TAG-ALIGN BED to determine required memory
atac.xcor_time_hr 6 Walltime (HPCs only)
atac.xcor_disk_factor 4.5 Multiplied to size of TAG-ALIGN BED to determine required disk
Parameter Default Description
atac.call_peak_cpu 2 MACS2 is single-threaded. More than 2 is not required.
atac.call_peak_mem_factor 4.0 Multiplied to size of TAG-ALIGN BED to determine required memory
atac.call_peak_time_hr 24 Walltime (HPCs only)
atac.call_peak_disk_factor 30.0 Multiplied to size of TAG-ALIGN BED to determine required disk
Parameter Default Description
atac.macs2_signal_track_mem_factor 12.0 Multiplied to size of TAG-ALIGN BED to determine required memory
atac.macs2_signal_track_time_hr 24 Walltime (HPCs only)
atac.macs2_signal_track_disk_factor 80.0 Multiplied to size of TAG-ALIGN BED to determine required disk
Parameter Default Description
atac.preseq_mem_factor 0.5 Multiplied to size of BAM to determine required memory
atac.preseq_disk_factor 5.0 Multiplied to size of BAM to determine required disk

If your system/cluster does not allow large memory allocation for Java applications, check the following resource parameters to manually define Java memory. It is NOT RECOMMENDED for most users to change these parameters since pipeline automatically takes 90% of task's memory for Java apps.

There are special parameters to control maximum Java heap memory (e.g. java -Xmx4G) for Java applications (e.g. Picard tools). They are strings including size units. Such string will be directly appended to Java's parameter -Xmx. If these parameters are not defined then pipeline uses 90% of each task's memory.

Parameter Default
atac.filter_picard_java_heap 90% of memory for atac.filter (dynamic)
atac.preseq_picard_java_heap 90% of memory for atac.preseq (dynamic)
atac.fraglen_stat_picard_java_heap 90% of memory for atac.fraglen_stat_pe (8GB)
atac.gc_bias_picard_java_heap 90% of memory for atac.gc_bias (8GB)