diff --git a/grid/src/Cabana_Grid_Splines.hpp b/grid/src/Cabana_Grid_Splines.hpp index c5f4e568d..997753f5f 100644 --- a/grid/src/Cabana_Grid_Splines.hpp +++ b/grid/src/Cabana_Grid_Splines.hpp @@ -451,6 +451,584 @@ struct Spline<3> } }; +//! Quartic. Defined on the dual grid. +template <> +struct Spline<4> +{ + //! Order. + static constexpr int order = 4; + + //! The number of non-zero knots in the spline. + static constexpr int num_knot = 5; + + /*! + \brief Map a physical location to the logical space of the primal + grid in a single dimension. + \param xp The coordinate to map to the logical space. + \param rdx The inverse of the physical distance between grid locations. + \param low_x The physical location of the low corner of the primal grid. + \return The coordinate in the logical primal grid space. + + \note Casting this result to an integer yields the index at the center of + the stencil. + \note A quartic spline uses the dual grid. + */ + template + KOKKOS_INLINE_FUNCTION static Scalar + mapToLogicalGrid( const Scalar xp, const Scalar rdx, const Scalar low_x ) + { + return ( xp - low_x ) * rdx + 0.5; + } + + /*! + * \brief Get the logical space stencil offsets of the spline. The + * stencil defines the offsets into a grid field about a logical coordinate. + * \param indices The stencil index offsets. + * */ + KOKKOS_INLINE_FUNCTION + static void offsets( int indices[num_knot] ) + { + indices[0] = -2; + indices[1] = -1; + indices[2] = 0; + indices[3] = 1; + indices[4] = 2; + } + + /*! + \brief Compute the stencil indices for a given logical space location. + \param x0 The coordinate at which to evaluate the spline stencil. + \param indices The indices of the stencil. + */ + template + KOKKOS_INLINE_FUNCTION static void stencil( const Scalar x0, + int indices[num_knot] ) + { + indices[0] = static_cast( x0 ) - 2; + indices[1] = indices[0] + 1; + indices[2] = indices[1] + 1; + indices[3] = indices[2] + 1; + indices[4] = indices[3] + 1; + } + + /*! + \brief Calculate the value of the spline at all knots. + \param x0 The coordinate at which to evaluate the spline in the logical + grid space. + \param values Basis values at the knots. Ordered from lowest to highest + in terms of knot location. + */ + template + KOKKOS_INLINE_FUNCTION static void value( const Scalar x0, + Scalar values[num_knot] ) + { + // Constants + Scalar denom_2 = 1.0 / 384.0; + Scalar denom_1 = denom_2 * 4.0; + Scalar denom_0 = denom_2 * 2.0; + + // Knot at i - 2 + Scalar xn = x0 - static_cast( x0 ); + xn -= 0.5; + values[0] = + ( 1.0 + + xn * ( -8.0 + xn * ( 24.0 + xn * ( -32.0 + xn * ( 16.0 ) ) ) ) ) * + denom_2; + + // Knot at i - 1 + values[1] = + ( 19.0 + xn * ( -44.0 + + xn * ( 24.0 + xn * ( 16.0 + xn * ( -16.0 ) ) ) ) ) * + denom_1; + + // Knot at i + values[2] = + ( 115.0 + xn * xn * ( -120.0 + xn * xn * ( 48.0 ) ) ) * denom_0; + + // Knot at i + 1 + values[3] = + ( 19.0 + xn * ( 44.0 + xn * ( 24.0 + xn * ( -16.0 + + xn * ( -16.0 ) ) ) ) ) * + denom_1; + + // Knot at i + 2 + values[4] = + ( 1.0 + + xn * ( 8.0 + xn * ( 24.0 + xn * ( 32.0 + xn * ( 16.0 ) ) ) ) ) * + denom_2; + } + + /*! + \brief Calculate the value of the gradient of the spline in the + physical frame. + \param x0 The coordinate at which to evaluate the spline in the logical + grid space. + \param rdx The inverse of the physical distance between grid locations. + \param gradients Basis gradient values at the knots in the physical frame. + Ordered from lowest to highest in terms of knot location. + */ + template + KOKKOS_INLINE_FUNCTION static void + gradient( const Scalar x0, const Scalar rdx, Scalar gradients[num_knot] ) + { + // Constants + Scalar denom_2 = 1.0 / 48.0; + Scalar denom_1 = denom_2 * 2.0; + Scalar denom_0 = denom_2 * 12.0; + + // Knot at i - 2 + Scalar xn = x0 - static_cast( x0 ); // - 1.5; + xn -= 0.5; + gradients[0] = ( -1.0 + xn * ( 6.0 + xn * ( -12.0 + xn * ( 8.0 ) ) ) ) * + denom_2 * rdx; + + // Knot at i - 1 + gradients[1] = + ( -11.0 + xn * ( 12.0 + xn * ( 12.0 + xn * ( -16.0 ) ) ) ) * + denom_1 * rdx; + + // Knot at i + gradients[2] = ( xn * ( -5.0 + xn * xn * ( 4.0 ) ) ) * denom_0 * rdx; + + // Knot at i + 1 + gradients[3] = + ( 11.0 + xn * ( 12.0 + xn * ( -12.0 + xn * ( -16.0 ) ) ) ) * + denom_1 * rdx; + + // Knot at i + 2 + gradients[4] = ( 1.0 + xn * ( 6.0 + xn * ( 12.0 + xn * ( 8.0 ) ) ) ) * + denom_2 * rdx; + } +}; + +//! Quintic. Defined on the primal grid. +template <> +struct Spline<5> +{ + //! Order. + static constexpr int order = 5; + + //! The number of non-zero knots in the spline. + static constexpr int num_knot = 6; + + /*! + \brief Map a physical location to the logical space of the primal grid in + a single dimension. + \param xp The coordinate to map to the logical space. + \param rdx The inverse of the physical distance between grid locations. + \param low_x The physical location of the low corner of the primal grid. + \return The coordinate in the logical primal grid space. + + \note Casting this result to an integer yields the index at the center of + the stencil. + \note A quintic spline uses the primal grid. + */ + template + KOKKOS_INLINE_FUNCTION static Scalar + mapToLogicalGrid( const Scalar xp, const Scalar rdx, const Scalar low_x ) + { + return ( xp - low_x ) * rdx; + } + + /*! + \brief Get the logical space stencil offsets of the spline. The stencil + defines the offsets into a grid field about a logical coordinate. + \param indices The stencil index offsets. + */ + KOKKOS_INLINE_FUNCTION + static void offsets( int indices[num_knot] ) + { + indices[0] = -2; + indices[1] = -1; + indices[2] = 0; + indices[3] = 1; + indices[4] = 2; + indices[5] = 3; + } + + /*! + \brief Compute the stencil indices for a given logical space location. + \param x0 The coordinate at which to evaluate the spline stencil. + \param indices The indices of the stencil. + */ + template + KOKKOS_INLINE_FUNCTION static void stencil( const Scalar x0, + int indices[num_knot] ) + { + indices[0] = static_cast( x0 ) - 2; + indices[1] = indices[0] + 1; + indices[2] = indices[1] + 1; + indices[3] = indices[2] + 1; + indices[4] = indices[3] + 1; + indices[5] = indices[4] + 1; + } + + /*! + \brief Calculate the value of the spline at all knots. + \param x0 The coordinate at which to evaluate the spline in the logical + grid space. + \param values Basis values at the knots. Ordered from lowest to highest in + terms of knot location. + */ + template + KOKKOS_INLINE_FUNCTION static void value( const Scalar x0, + Scalar values[num_knot] ) + { + // Constants + Scalar denom_2 = 1.0 / 3840.0; + Scalar denom_1 = denom_2 * 2.0; + + // Knot at i - 2 + Scalar xn = x0 - static_cast( x0 ); + xn -= 0.5; + values[0] = + ( 1.0 + + xn * ( -10.0 + + xn * ( 40.0 + + xn * ( -80.0 + + xn * ( 80.0 + xn * ( -32.0 ) ) ) ) ) ) * + denom_2; + + // Knot at i - 1 + values[1] = + ( 237.0 + + xn * ( -750.0 + + xn * ( 840.0 + + xn * ( -240.0 + + xn * ( -240.0 + xn * ( 160.0 ) ) ) ) ) ) * + denom_2; + + // Knot at i + values[2] = + ( 841.0 + + xn * ( -770.0 + + xn * ( -440.0 + + xn * ( 560.0 + + xn * ( 80.0 + xn * ( -160.0 ) ) ) ) ) ) * + denom_1; + + // Knot at i + 1 + values[3] = + ( 841.0 + + xn * ( 770.0 + + xn * ( -440.0 + + xn * ( -560.0 + + xn * ( 80.0 + xn * ( 160.0 ) ) ) ) ) ) * + denom_1; + + // Knot at i + 2 + values[4] = + ( 237.0 + + xn * ( 750.0 + + xn * ( 840.0 + + xn * ( 240.0 + + xn * ( -240.0 + xn * ( -160.0 ) ) ) ) ) ) * + denom_2; + + // Knot at i + 3 + values[5] = + ( 1.0 + xn * ( 10.0 + + xn * ( 40.0 + + xn * ( 80.0 + + xn * ( 80.0 + xn * ( 32.0 ) ) ) ) ) ) * + denom_2; + } + + /*! + \brief Calculate the value of the gradient of the spline in the physical + frame. + \param x0 The coordinate at which to evaluate the spline in the logical + grid space. + \param rdx The inverse of the physical distance between grid locations. + \param gradients Basis gradient values at the knots in the physical frame. + Ordered from lowest to highest in terms of knot location. + */ + template + KOKKOS_INLINE_FUNCTION static void + gradient( const Scalar x0, const Scalar rdx, Scalar gradients[num_knot] ) + { + // Constants + Scalar denom_2 = 1.0 / 384.0; + Scalar denom_1 = denom_2 * 2.0; + + // Knot at i - 2 + Scalar xn = x0 - static_cast( x0 ); + xn -= 0.5; + gradients[0] = + ( -1.0 + + xn * ( 8.0 + xn * ( -24.0 + xn * ( 32.0 + xn * ( -16.0 ) ) ) ) ) * + denom_2 * rdx; + + // Knot at i - 1 + gradients[1] = + ( -75.0 + xn * + ( 168.0 + xn * ( -72.0 + xn * ( -96.0 + xn * ( 80.0 ) ) ) ) ) * + denom_2 * rdx; + + // Knot at i + gradients[2] = + ( -77.0 + + xn * ( -88.0 + + xn * ( 168.0 + xn * ( 32.0 + xn * ( -80.0 ) ) ) ) ) * + denom_1 * rdx; + + // Knot at i + 1 + gradients[3] = + ( 77.0 + xn * ( -88.0 + xn * ( -168.0 + + xn * ( 32.0 + xn * ( 80.0 ) ) ) ) ) * + denom_1 * rdx; + + // Knot at i + 2 + gradients[4] = + ( 75.0 + xn * + ( 168.0 + xn * ( 72.0 + xn * ( -96.0 + xn * ( -80.0 ) ) ) ) ) * + denom_2 * rdx; + + // Knot at i + 3 + gradients[5] = + ( 1.0 + + xn * ( 8.0 + xn * ( 24.0 + xn * ( 32.0 + xn * ( 16.0 ) ) ) ) ) * + denom_2 * rdx; + } +}; + +//! Sextic. Defined on the dual grid. +template <> +struct Spline<6> +{ + //! Order. + static constexpr int order = 6; + + //! The number of non-zero knots in the spline. + static constexpr int num_knot = 7; + + /*! + \brief Map a physical location to the logical space of the primal grid in + a single dimension. + \param xp The coordinate to map to the logical space. + \param rdx The inverse of the physical distance between grid locations. + \param low_x The physical location of the low corner of the primal grid. + \return The coordinate in the logical primal grid space. + + \note Casting this result to an integer yields the index at the center of + the stencil. + \note A sextic spline uses the primal grid. + */ + template + KOKKOS_INLINE_FUNCTION static Scalar + mapToLogicalGrid( const Scalar xp, const Scalar rdx, const Scalar low_x ) + { + return ( xp - low_x ) * rdx + 0.5; + } + + /*! + \brief Get the logical space stencil offsets of the spline. The stencil + defines the offsets into a grid field about a logical coordinate. + \param indices The stencil index offsets. + */ + KOKKOS_INLINE_FUNCTION + static void offsets( int indices[num_knot] ) + { + indices[0] = -3; + indices[1] = -2; + indices[2] = -1; + indices[3] = 0; + indices[4] = 1; + indices[5] = 2; + indices[6] = 3; + } + + /*! + \brief Compute the stencil indices for a given logical space location. + \param x0 The coordinate at which to evaluate the spline stencil. + \param indices The indices of the stencil. + */ + template + KOKKOS_INLINE_FUNCTION static void stencil( const Scalar x0, + int indices[num_knot] ) + { + indices[0] = static_cast( x0 ) - 3; + indices[1] = indices[0] + 1; + indices[2] = indices[1] + 1; + indices[3] = indices[2] + 1; + indices[4] = indices[3] + 1; + indices[5] = indices[4] + 1; + indices[6] = indices[5] + 1; + } + + /*! + \brief Calculate the value of the spline at all knots. + \param x0 The coordinate at which to evaluate the spline in the logical + grid space. + \param values Basis values at the knots. Ordered from lowest to highest + in terms of knot location. + */ + template + KOKKOS_INLINE_FUNCTION static void value( const Scalar x0, + Scalar values[num_knot] ) + { + // Constants + Scalar denom_31 = 1.0 / 46080.0; + Scalar denom_2 = denom_31 * 2.0; + Scalar denom_0 = denom_2 * 2.0; + + // Knot at i - 3 + Scalar xn = x0 - static_cast( x0 ); + xn -= 0.5; + values[0] = + ( 1.0 + + xn * ( -12.0 + + xn * ( 60.0 + + xn * ( -160.0 + + xn * ( 240.0 + + xn * ( -192.0 + + xn * ( 64.0 ) ) ) ) ) ) ) * + denom_31; + + // Knot at i - 2 + values[1] = + ( 361.0 + + xn * ( -1416.0 + + xn * ( 2220.0 + + xn * ( -1600.0 + + xn * ( 240.0 + + xn * ( 384.0 + + xn * ( -192.0 ) ) ) ) ) ) ) * + denom_2; + + // Knot at i - 1 + values[2] = + ( 10543.0 + + xn * ( -17340.0 + + xn * ( 4740.0 + + xn * ( 6880.0 + + xn * ( -4080.0 + + xn * ( -960.0 + + xn * ( 960.0 ) ) ) ) ) ) ) * + denom_31; + + // Knot at i + values[3] = + ( 5887.0 + + xn * xn * + ( -4620.0 + xn * xn * ( 1680.0 + xn * xn * ( -320.0 ) ) ) ) * + denom_0; + + // Knot at i + 1 + values[4] = + ( 10543.0 + + xn * ( 17340.0 + + xn * ( 4740.0 + + xn * ( -6880.0 + + xn * ( -4080.0 + + xn * ( 960.0 + + xn * ( 960.0 ) ) ) ) ) ) ) * + denom_31; + + // Knot at i + 2 + values[5] = + ( 361.0 + + xn * ( 1416.0 + + xn * ( 2220.0 + + xn * ( 1600.0 + + xn * ( 240.0 + + xn * ( -384.0 + + xn * ( -192.0 ) ) ) ) ) ) ) * + denom_2; + + // Knot at i + 3 + values[6] = + ( 1.0 + + xn * ( 12.0 + + xn * ( 60.0 + + xn * ( 160.0 + + xn * ( 240.0 + + xn * ( 192.0 + + xn * ( 64.0 ) ) ) ) ) ) ) * + denom_31; + } + + /*! + \brief Calculate the value of the gradient of the spline in the physical + frame. + \param x0 The coordinate at which to evaluate the spline in the logical + grid space. + \param rdx The inverse of the physical distance between grid locations. + \param gradients Basis gradient values at the knots in the physical frame. + Ordered from lowest to highest in terms of knot location. + */ + template + KOKKOS_INLINE_FUNCTION static void + gradient( const Scalar x0, const Scalar rdx, Scalar gradients[num_knot] ) + { + // Constants + Scalar denom_3 = 1.0 / 3840.0; + Scalar denom_2 = denom_3 * 4.0; + Scalar denom_1 = denom_3 * 5.0; + Scalar denom_0 = denom_3 * 40.0; + + // Knot at i - 2 + Scalar xn = x0 - static_cast( x0 ); + xn -= 0.5; + gradients[0] = + ( -1.0 + + xn * ( 10.0 + + xn * ( -40.0 + + xn * ( 80.0 + + xn * ( -80.0 + xn * ( 32.0 ) ) ) ) ) ) * + denom_3 * rdx; + + // Knot at i - 2 + gradients[1] = + ( -59.0 + + xn * ( 185.0 + + xn * ( -200.0 + + xn * ( 40.0 + + xn * ( 80.0 + xn * ( -48.0 ) ) ) ) ) ) * + denom_2 * rdx; + + // Knot at i - 1 + gradients[2] = + ( -289.0 + + xn * ( 158.0 + + xn * ( 344.0 + + xn * ( -272.0 + + xn * ( -80.0 + xn * ( 96.0 ) ) ) ) ) ) * + denom_1 * rdx; + + // Knot at i + gradients[3] = + ( xn * ( -77.0 + xn * xn * ( 56.0 + xn * xn * ( -16.0 ) ) ) ) * + denom_0 * rdx; + + // Knot at i + 1 + gradients[4] = + ( 289.0 + + xn * ( 158.0 + + xn * ( -344.0 + + xn * ( -272.0 + + xn * ( 80.0 + xn * ( 96.0 ) ) ) ) ) ) * + denom_1 * rdx; + + // Knot at i + 2 + gradients[5] = + ( 59.0 + + xn * ( 185.0 + + xn * ( 200.0 + + xn * ( 40.0 + + xn * ( -80.0 + xn * ( -48.0 ) ) ) ) ) ) * + denom_2 * rdx; + + // Knot at i + 3 + gradients[6] = + ( 1.0 + xn * ( 10.0 + + xn * ( 40.0 + + xn * ( 80.0 + + xn * ( 80.0 + xn * ( 32.0 ) ) ) ) ) ) * + denom_3 * rdx; + } +}; + //---------------------------------------------------------------------------// // Spline Data //---------------------------------------------------------------------------// @@ -496,7 +1074,6 @@ struct has_spline_tag> : has_spline_tag> { }; - template struct has_spline_tag> : std::true_type { diff --git a/grid/unit_test/tstSplines.hpp b/grid/unit_test/tstSplines.hpp index 6d32f3269..d0086c013 100644 --- a/grid/unit_test/tstSplines.hpp +++ b/grid/unit_test/tstSplines.hpp @@ -281,4 +281,240 @@ TEST( Splines, Cubic ) EXPECT_FLOAT_EQ( field_grad, grid_deriv( xp ) ); } +TEST( Splines, Quartic ) +{ + // Check partition of unity for the quartic spline. + double xp = -1.4; + double low_x = -3.43; + double dx = 0.27; + double rdx = 1.0 / dx; + double values[5]; + + double x0 = Spline<4>::mapToLogicalGrid( xp, rdx, low_x ); + Spline<4>::value( x0, values ); + double sum = 0.0; + for ( auto x : values ) + sum += x; + EXPECT_FLOAT_EQ( sum, 1.0 ); + + xp = 2.1789; + x0 = Spline<4>::mapToLogicalGrid( xp, rdx, low_x ); + Spline<4>::value( x0, values ); + sum = 0.0; + for ( auto x : values ) + sum += x; + EXPECT_FLOAT_EQ( sum, 1.0 ); + + xp = low_x + 5 * dx; + x0 = Spline<4>::mapToLogicalGrid( xp, rdx, low_x ); + Spline<4>::value( x0, values ); + sum = 0.0; + for ( auto x : values ) + sum += x; + EXPECT_FLOAT_EQ( sum, 1.0 ); + + // Check the stencil by putting a point in the center of a primal cell. + int node_id = 4; + xp = low_x + ( node_id + 0.25 ) * dx; + x0 = Spline<4>::mapToLogicalGrid( xp, rdx, low_x ); + int offsets[5]; + Spline<4>::offsets( offsets ); + EXPECT_EQ( int( x0 ) + offsets[0], node_id - 2 ); + EXPECT_EQ( int( x0 ) + offsets[1], node_id - 1 ); + EXPECT_EQ( int( x0 ) + offsets[2], node_id ); + EXPECT_EQ( int( x0 ) + offsets[3], node_id + 1 ); + EXPECT_EQ( int( x0 ) + offsets[4], node_id + 2 ); + + int stencil[5]; + Spline<4>::stencil( x0, stencil ); + EXPECT_EQ( stencil[0], node_id - 2 ); + EXPECT_EQ( stencil[1], node_id - 1 ); + EXPECT_EQ( stencil[2], node_id ); + EXPECT_EQ( stencil[3], node_id + 1 ); + EXPECT_EQ( stencil[4], node_id + 2 ); + + // Check the interpolation of a function. + auto grid_func = [=]( const double x ) { return 4.32 * x - 0.31; }; + double field[Spline<4>::num_knot]; + field[0] = grid_func( low_x + ( node_id - 2 ) * dx ); + field[1] = grid_func( low_x + ( node_id - 1 ) * dx ); + field[2] = grid_func( low_x + node_id * dx ); + field[3] = grid_func( low_x + ( node_id + 1 ) * dx ); + field[4] = grid_func( low_x + ( node_id + 2 ) * dx ); + Spline<4>::value( x0, values ); + double field_xp = field[0] * values[0] + field[1] * values[1] + + field[2] * values[2] + field[3] * values[3] + + field[4] * values[4]; + EXPECT_FLOAT_EQ( field_xp, grid_func( xp ) ); + + // Check the derivative of a function. + Spline<4>::gradient( x0, rdx, values ); + double field_grad = field[0] * values[0] + field[1] * values[1] + + field[2] * values[2] + field[3] * values[3] + + field[4] * values[4]; + auto grid_deriv = [=]( const double ) { return 4.32; }; + EXPECT_FLOAT_EQ( field_grad, grid_deriv( xp ) ); +} + +TEST( Splines, Quintic ) +{ + // Check partition of unity for the quintic spline. + double xp = -1.4; + double low_x = -3.43; + double dx = 0.27; + double rdx = 1.0 / dx; + double values[6]; + + double x0 = Spline<5>::mapToLogicalGrid( xp, rdx, low_x ); + Spline<5>::value( x0, values ); + double sum = 0.0; + for ( auto x : values ) + sum += x; + EXPECT_FLOAT_EQ( sum, 1.0 ); + + xp = 2.1789; + x0 = Spline<5>::mapToLogicalGrid( xp, rdx, low_x ); + Spline<5>::value( x0, values ); + sum = 0.0; + for ( auto x : values ) + sum += x; + EXPECT_FLOAT_EQ( sum, 1.0 ); + + xp = low_x + 5 * dx; + x0 = Spline<5>::mapToLogicalGrid( xp, rdx, low_x ); + Spline<5>::value( x0, values ); + sum = 0.0; + for ( auto x : values ) + sum += x; + EXPECT_FLOAT_EQ( sum, 1.0 ); + + // Check the stencil by putting a point in the center of a primal cell. + int cell_id = 4; + xp = low_x + ( cell_id + 0.75 ) * dx; + x0 = Spline<5>::mapToLogicalGrid( xp, rdx, low_x ); + int offsets[6]; + Spline<5>::offsets( offsets ); + EXPECT_EQ( int( x0 ) + offsets[0], cell_id - 2 ); + EXPECT_EQ( int( x0 ) + offsets[1], cell_id - 1 ); + EXPECT_EQ( int( x0 ) + offsets[2], cell_id ); + EXPECT_EQ( int( x0 ) + offsets[3], cell_id + 1 ); + EXPECT_EQ( int( x0 ) + offsets[4], cell_id + 2 ); + EXPECT_EQ( int( x0 ) + offsets[5], cell_id + 3 ); + + int stencil[6]; + Spline<5>::stencil( x0, stencil ); + EXPECT_EQ( stencil[0], cell_id - 2 ); + EXPECT_EQ( stencil[1], cell_id - 1 ); + EXPECT_EQ( stencil[2], cell_id ); + EXPECT_EQ( stencil[3], cell_id + 1 ); + EXPECT_EQ( stencil[4], cell_id + 2 ); + EXPECT_EQ( stencil[5], cell_id + 3 ); + + // Check the interpolation of a function. + auto grid_func = [=]( const double x ) { return 4.32 * x - 0.31; }; + double field[Spline<5>::num_knot]; + field[0] = grid_func( low_x + ( cell_id - 2 ) * dx ); + field[1] = grid_func( low_x + ( cell_id - 1 ) * dx ); + field[2] = grid_func( low_x + cell_id * dx ); + field[3] = grid_func( low_x + ( cell_id + 1 ) * dx ); + field[4] = grid_func( low_x + ( cell_id + 2 ) * dx ); + field[5] = grid_func( low_x + ( cell_id + 3 ) * dx ); + Spline<5>::value( x0, values ); + double field_xp = field[0] * values[0] + field[1] * values[1] + + field[2] * values[2] + field[3] * values[3] + + field[4] * values[4] + field[5] * values[5]; + EXPECT_FLOAT_EQ( field_xp, grid_func( xp ) ); + + // Check the derivative of a function. + Spline<5>::gradient( x0, rdx, values ); + double field_grad = field[0] * values[0] + field[1] * values[1] + + field[2] * values[2] + field[3] * values[3] + + field[4] * values[4] + field[5] * values[5]; + auto grid_deriv = [=]( const double ) { return 4.32; }; + EXPECT_FLOAT_EQ( field_grad, grid_deriv( xp ) ); +} + +TEST( Splines, Sextic ) +{ + // Check partition of unity for the sextic spline. + double xp = -1.4; + double low_x = -3.43; + double dx = 0.27; + double rdx = 1.0 / dx; + double values[7]; + + double x0 = Spline<6>::mapToLogicalGrid( xp, rdx, low_x ); + Spline<6>::value( x0, values ); + double sum = 0.0; + for ( auto x : values ) + sum += x; + EXPECT_FLOAT_EQ( sum, 1.0 ); + + xp = 2.1789; + x0 = Spline<6>::mapToLogicalGrid( xp, rdx, low_x ); + Spline<6>::value( x0, values ); + sum = 0.0; + for ( auto x : values ) + sum += x; + EXPECT_FLOAT_EQ( sum, 1.0 ); + + xp = low_x + 5 * dx; + x0 = Spline<6>::mapToLogicalGrid( xp, rdx, low_x ); + Spline<6>::value( x0, values ); + sum = 0.0; + for ( auto x : values ) + sum += x; + EXPECT_FLOAT_EQ( sum, 1.0 ); + + // Check the stencil by putting a point in the center of a primal cell. + int node_id = 4; + xp = low_x + ( node_id + 0.25 ) * dx; + x0 = Spline<6>::mapToLogicalGrid( xp, rdx, low_x ); + int offsets[7]; + Spline<6>::offsets( offsets ); + EXPECT_EQ( int( x0 ) + offsets[0], node_id - 3 ); + EXPECT_EQ( int( x0 ) + offsets[1], node_id - 2 ); + EXPECT_EQ( int( x0 ) + offsets[2], node_id - 1 ); + EXPECT_EQ( int( x0 ) + offsets[3], node_id ); + EXPECT_EQ( int( x0 ) + offsets[4], node_id + 1 ); + EXPECT_EQ( int( x0 ) + offsets[5], node_id + 2 ); + EXPECT_EQ( int( x0 ) + offsets[6], node_id + 3 ); + + int stencil[7]; + Spline<6>::stencil( x0, stencil ); + EXPECT_EQ( stencil[0], node_id - 3 ); + EXPECT_EQ( stencil[1], node_id - 2 ); + EXPECT_EQ( stencil[2], node_id - 1 ); + EXPECT_EQ( stencil[3], node_id ); + EXPECT_EQ( stencil[4], node_id + 1 ); + EXPECT_EQ( stencil[5], node_id + 2 ); + EXPECT_EQ( stencil[6], node_id + 3 ); + + // Check the interpolation of a function. + auto grid_func = [=]( const double x ) { return 4.32 * x - 0.31; }; + double field[Spline<6>::num_knot]; + field[0] = grid_func( low_x + ( node_id - 3 ) * dx ); + field[1] = grid_func( low_x + ( node_id - 2 ) * dx ); + field[2] = grid_func( low_x + ( node_id - 1 ) * dx ); + field[3] = grid_func( low_x + node_id * dx ); + field[4] = grid_func( low_x + ( node_id + 1 ) * dx ); + field[5] = grid_func( low_x + ( node_id + 2 ) * dx ); + field[6] = grid_func( low_x + ( node_id + 3 ) * dx ); + Spline<6>::value( x0, values ); + double field_xp = field[0] * values[0] + field[1] * values[1] + + field[2] * values[2] + field[3] * values[3] + + field[4] * values[4] + field[5] * values[5] + + field[6] * values[6]; + EXPECT_FLOAT_EQ( field_xp, grid_func( xp ) ); + + // Check the derivative of a function. + Spline<6>::gradient( x0, rdx, values ); + double field_grad = field[0] * values[0] + field[1] * values[1] + + field[2] * values[2] + field[3] * values[3] + + field[4] * values[4] + field[5] * values[5] + + field[6] * values[6]; + auto grid_deriv = [=]( const double ) { return 4.32; }; + EXPECT_FLOAT_EQ( field_grad, grid_deriv( xp ) ); +} + } // end namespace Test