-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcarabids_01_download_AOP.R
99 lines (69 loc) · 3.38 KB
/
carabids_01_download_AOP.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
library(dplyr)
library(neonUtilities)
library(raster)
# Canopy height explo -----------------------------------------------------
byFileAOP(dpID = "DP3.30015.001", site = "NIWO", check.size = F) # 830 MB #called ecosystem structure in data portal
#only 2017 downloaded for some reason - will need to figure this out at some point
path_to_tifs = "data_raw/DP3.30015.001/2017/FullSite/D13/2017_NIWO_1/L3/DiscreteLidar/CanopyHeightModelGtif/"
file_list = list.files(path_to_tifs)
files = paste0(path_to_tifs, file_list)
# make list of rasters from each individual .tif
rast_list = list()
for (i in 1:length(files)){
rast_list[[i]] = raster(files[i])
}
# merge all rasters
full = do.call(merge, rast_list)
writeRaster(full, filename = "data_derived/neonCHM_1x1.grd")
full_25 = full %>%
aggregate(fact = 25) #make it 25x25m
#saving a lower resolution raster for plotting
writeRaster(full_25, filename = "data_derived/neonCHM_25x25.grd")
# LAI ------------------------------------------------------------
# Dwonload data
byFileAOP(dpID="DP3.30012.001", site="NIWO", year=2017, check.size=T, savepath="data_raw/") # 708 MB
byFileAOP(dpID="DP3.30012.001", site="NIWO", year=2018, check.size=T, savepath="data_raw/") # 795 MB
byFileAOP(dpID="DP3.30012.001", site="NIWO", year=2019, check.size=T, savepath="data_raw/") # 1800 MB
# AIS From NEON LAI data product details: AOP legacy data (those collected in 2013 through 2016) currently has partial availability, and will be completely available by April of 2019.
# Merge tiles
years <- c("2017","2018","2019")
for (i in years) {
# get vector of all .tif file names
path_to_tifs = paste0("data_raw/DP3.30012.001/",i,"/FullSite/D13/",i,"_NIWO_",which(years==i),"/L3/Spectrometer/LAI/")
file_list <- list.files(path_to_tifs)
file_paths <- paste0(path_to_tifs, file_list)
# make list of rasters from each individual .tif
rast_list = list()
for (j in 1:length(file_paths)){
rast_list[[j]] <- raster(file_paths[j])
}
# merge all rasters
full_lai_1x1 <- do.call("merge", rast_list)
writeRaster(full_lai_1x1, filename = paste0("data_derived/neonLAI_1x1_",i,".grd"))
}
# Slope/Aspect ------------------------------------------------------------
# Download data
years <- c("2017","2018","2019")
byFileAOP(dpID="DP3.30025.001",site="NIWO",year=years[1],check.size=T,savepath="data_raw/") # 1.4 GB
byFileAOP(dpID="DP3.30025.001",site="NIWO",year=years[2],check.size=T,savepath="data_raw/") # 1.5 GB
byFileAOP(dpID="DP3.30025.001",site="NIWO",year=years[3],check.size=T,savepath="data_raw/") # 1.6 GB
# Merge tiles
product <- c("Aspect", "Slope")
for (i in years) {
for (j in product) {
# get vector of all .tif file names
path_to_tifs = paste0("data_raw/DP3.30025.001/",i,"/FullSite/D13/",i,"_NIWO_",which(years==i),"/L3/DiscreteLidar/",j,"Gtif/")
file_list <- list.files(path_to_tifs)
file_paths <- paste0(path_to_tifs, file_list)
# make list of rasters from each individual .tif
rast_list = list()
for (k in 1:length(file_paths)){
rast_list[[k]] <- raster(file_paths[k])
}
# merge all rasters
full_1x1 <- do.call("merge", rast_list)
writeRaster(full_1x1, filename = paste0("data_derived/neon",j,"_1x1_",i,".grd"))
}
print(which(years==i))
if (which(years==i) == length(years)) cat("DONE!\n")
} #started 1:30