forked from amdegroot/ssd.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidation.py
426 lines (356 loc) · 16.7 KB
/
validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import numpy as np
from torch.autograd import Variable
import torch.nn.functional as F
import cv2
def detect(loc_data, conf_data, prior_data, background_label=0, top_k=100, conf_thresh=0.5, nms_threshold=0.4, variance=(0.1, 0.2)):
"""
Args:
loc_data: (tensor) Loc preds from loc layers
Shape: [batch,num_priors, 4]
conf_data: (tensor) Shape: Conf preds from conf layers
Shape: [batch, num_priors, num_classes]
prior_data: (tensor) Prior boxes and variances from priorbox layers
Shape: [1,num_priors,4]
"""
batch_size = loc_data.shape[0] # batch size
# masks for removing background bboxes
conf_data = np.delete(conf_data, (background_label), 2)
mask_all = conf_data.max(axis=2) > conf_thresh
boxes_list = []
labels_list = []
scores_list = []
# Decode predictions into bboxes.
for i in range(batch_size):
conf_data_i = conf_data[i]
loc_data_i = loc_data[i]
conf_data_i = conf_data_i[mask_all[i]]
decoded_boxes = decode_np(loc_data_i[mask_all[i]], prior_data[mask_all[i]], variance)
bboxes, labels, scores = nms_np(decoded_boxes, conf_data_i, nms_threshold, top_k)
boxes_list.append(bboxes)
labels_list.append(labels)
scores_list.append(scores)
return boxes_list, labels_list, scores_list
class Validator():
def __init__(self, data_loader, model, num_classes, criterion=None,
max_ims=None, conf_thresh=0.5, nms_thresh=0.3, match_treshold=0.5, cuda=True):
self.loader = data_loader
self.gt = None
self.model = model
self.num_classes = num_classes - 1
self.criterion = criterion
self.nms_thresh = nms_thresh
self.conf_thresh = conf_thresh
self.match_treshold = match_treshold
self.cuda = cuda
if max_ims != None:
self.max_ims = max_ims
else:
self.max_ims = len(self.loader)
def validate(self):
# precision, recall = self.precision_recall(self.conf_thresh)
#
# for idx in range(self.num_classes):
# print("{2:20} Precision: {0:.4f}, Recall: {1:.4f}".format(precision[idx], recall[idx], self.classes_names[idx]))
if self.criterion:
AP, losses = self.AP()
else:
AP = self.AP()
# for idx in range(self.num_classes):
# print("{0:20} AP: {1:.4f}".format(self.classes_names[idx], AP[idx]))
#
# print("mAP: {}".format(np.mean(AP)))
mAP = np.mean(AP)
if self.criterion:
return AP, mAP, losses
else:
return AP, mAP
def get_pred(self, loc_data, conf_data, priors,
background_label=0,
top_k=100,
conf_thresh=0.5,
nms_threshold=0.5,
variance=(0.1, 0.2)):
conf_data = F.softmax(conf_data, dim=2).data.cpu().numpy()
loc_data = loc_data.data.cpu().numpy()
priors = priors.data.cpu().numpy()
pred_boxes, pred_labels, scores = detect(loc_data,
conf_data,
priors,
background_label=background_label,
top_k=top_k,
conf_thresh=conf_thresh,
nms_threshold=nms_threshold,
variance=variance)
return pred_boxes, pred_labels, scores, priors
def precision_recall(self, conf_thresh):
positives = np.zeros((self.num_classes), dtype=np.int32)
tp = np.zeros((self.num_classes), dtype=np.int32)
fp = np.zeros((self.num_classes), dtype=np.int32)
loss = []
loss_loc = []
loss_conf = []
for imgs, gt_bboxes in self.loader:
if self.cuda:
imgs = imgs.cuda()
imgs = Variable(imgs)
gt_bboxes = [Variable(gt) for gt in gt_bboxes]
loc_data, conf_data, priors = self.model(imgs)
if self.criterion != None:
loss_l, loss_c = self.criterion((loc_data, conf_data, priors), gt_bboxes)
loss_loc += [loss_l.data.cpu().numpy()]
loss_conf += [loss_c.data.cpu().numpy()]
loss += [(loss_l + loss_c).data.cpu().numpy()]
pred_boxes, pred_labels, scores, priors = self.get_pred(loc_data, conf_data, priors,
background_label=0,
top_k=100,
conf_thresh=conf_thresh,
nms_threshold=self.nms_thresh,
variance = (0.1, 0.2)
)
gt_bboxes = [gt.data.cpu().numpy() for gt in gt_bboxes]
# for i in range(len(gt_bboxes)):
# img = np.transpose(imgs[i].data.cpu().numpy(), (1,2,0)).astype(np.uint8)[:, :, ::-1]
# pred_box = pred_boxes[i]
# img = draw.draw_target(img, pred_box)
# img = draw.draw_target(img, gt_bboxes[i], color=(0,0,255))
# cv2.imshow("img", img)
# cv2.waitKey()
for i in range(len(gt_bboxes)):
gt = gt_bboxes[i]
pred_boxes_i = pred_boxes[i]
pred_labels_i = pred_labels[i]
positives_i, tp_i, fp_i = match_output(gt[:, :4], gt[:, 4],
pred_boxes_i, pred_labels_i,
self.num_classes, iou_match=self.match_treshold)
positives += positives_i
fp += fp_i
tp += tp_i
recall = tp / positives
precision = tp / (tp + fp + 0.001)
if self.criterion != None:
loss = np.mean(np.stack(loss))
loss_conf = np.mean(np.stack(loss_conf))
loss_loc = np.mean(np.stack(loss_loc))
losses = (loss, loss_conf, loss_loc)
return precision, recall, losses
else:
return precision, recall
def AP(self):
gt_list = []
pred_boxes_list, pred_labels_list, scores_list = [], [], []
loss = []
loss_loc = []
loss_conf = []
for imgs, gt_bboxes in self.loader:
if self.cuda:
imgs = imgs.cuda()
gt_bboxes = [ gt.cuda() for gt in gt_bboxes]
imgs = Variable(imgs)
gt_bboxes = [Variable(gt) for gt in gt_bboxes]
loc_data, conf_data, priors = self.model(imgs)
if self.criterion != None:
loss_l, loss_c = self.criterion((loc_data, conf_data, priors), gt_bboxes)
loss_loc += [loss_l.data.cpu().numpy()]
loss_conf += [loss_c.data.cpu().numpy()]
loss += [(loss_l + loss_c).data.cpu().numpy()]
pred_boxes, pred_labels, scores, priors = self.get_pred(loc_data, conf_data, priors,
background_label=0,
top_k=100,
conf_thresh=0.01,
nms_threshold=self.nms_thresh,
variance=(0.1, 0.2)
)
gt_bboxes = [gt.data.cpu().numpy() for gt in gt_bboxes]
gt_list += gt_bboxes
pred_boxes_list += pred_boxes
pred_labels_list += pred_labels
scores_list += scores
tp_list, pos_list = [], []
for pred_boxes, pred_labels, scores, gt in zip(pred_boxes_list, pred_labels_list, scores_list, gt_list):
pos, true_pos = mathching_mask(gt[:, :4], gt[:, 4],
pred_boxes, pred_labels,
self.num_classes, iou_match=self.match_treshold)
tp_list.append(true_pos)
pos_list.append(pos)
positives = np.stack(pos_list)
positives = np.sum(positives, axis=0)
tp_list = np.concatenate(tp_list, axis=0)
pred_labels_list = np.concatenate(pred_labels_list, axis=0)
scores_list = np.concatenate(scores_list, axis=0)
AP = np.zeros((self.num_classes))
for class_idx in range(self.num_classes):
idx = pred_labels_list == class_idx
tp_list_i = tp_list[idx]
scores_list_i = scores_list[idx]
idx_sort = np.argsort(-scores_list_i)
fa = 1 - tp_list_i[idx_sort]
tp_list_i = np.cumsum(tp_list_i[idx_sort])
fa_list_i = np.cumsum(fa)
precision = tp_list_i / (tp_list_i + fa_list_i + 0.001)
recall = tp_list_i / positives[class_idx]
AP[class_idx] = np.sum((recall[1:] - recall[:-1]) * precision[1:])
if self.criterion != None:
loss = np.mean(np.stack(loss))
loss_conf = np.mean(np.stack(loss_conf))
loss_loc = np.mean(np.stack(loss_loc))
losses = (loss, loss_conf, loss_loc)
return AP, losses
else:
return AP
def mathching_mask(true_bboxes, true_labels, pred_bboxes, pred_labels, num_classes, iou_match = 0.5):
'''
Calculates per class matching between true and predicted bounding boxes
true_bboxes: ground truth bboxes [x1, y1, x2, y2], Shape: [N, 4]
true_labels: ground truth labels, Shape: [N]
pred_bboxes: predicted bboxes [x1, y1, x2, y2], Shape: [M, 4]
pred_labels: predicted labels, Shape: [N]
num_classes: number of classes
iou_match: threshold for compare bboxes
return:
positives: Number of bboxes corresponding to all classes, Shape: [num_classes]
is_matched: Vector of pred_bboxes length, is_matched[i] = 1 - pred_bboxes[i] is matched with some ground truth
is_matched[i] = 0 - pred_bboxes[i] is false alarm, Shape: [M]
'''
positives = np.zeros((num_classes), dtype=np.int32)
is_matched = np.zeros((pred_bboxes.shape[0]), dtype=np.int32)
for class_idx in range(num_classes):
true_bboxes_i = true_bboxes[true_labels == class_idx]
positives[class_idx] = len(true_bboxes_i)
pred_bboxes_i = pred_bboxes[pred_labels == class_idx]
if len(pred_bboxes_i) == 0:
continue
true_matched = np.zeros((len(true_bboxes_i)), dtype=np.int32)
pred_matched = np.zeros((len(pred_bboxes_i)), dtype=np.int32)
for idx, true_bbox in enumerate(true_bboxes_i):
iou = IoU_point_np(true_bbox, pred_bboxes_i)
# exclude matched bboxes
iou = iou * (1 - pred_matched)
# find matching
iou_max = np.max(iou)
if iou_max > iou_match:
true_matched[idx] = 1
pred_matched[np.argmax(iou)] = 1
is_matched[pred_labels == class_idx] = pred_matched
return positives, is_matched
def match_output(true_bboxes, true_labels, pred_bboxes, pred_labels, num_classes, iou_match = 0.5):
'''
Calculates per class matching between true and predicted bounding boxes
true_bboxes: ground truth bboxes [x1, y1, x2, y2], Shape: [N, 4]
true_labels: ground truth labels, Shape: [N]
pred_bboxes: predicted bboxes [x1, y1, x2, y2], Shape: [M, 4]
pred_labels: predicted labels, Shape: [N]
num_classes: number of classes
iou_match: threshold for compare bboxes
return:
positives: Number of bboxes corresponding to all classes, Shape: [num_classes]
tp: Per class true positives number, Shape: [num_classes]
fp: Per class false positives number, Shape: [num_classes]
'''
positives = np.zeros((num_classes), dtype=np.int32)
tp = np.zeros((num_classes), dtype=np.int32)
fp = np.zeros((num_classes), dtype=np.int32)
for class_idx in range(num_classes):
true_bboxes_i = true_bboxes[true_labels == class_idx]
pred_bboxes_i = pred_bboxes[pred_labels == class_idx]
true_matched = np.zeros((len(true_bboxes_i)), dtype=np.int32)
pred_matched = np.zeros((len(pred_bboxes_i)), dtype=np.int32)
if len(pred_bboxes_i) > 0:
for idx, true_bbox in enumerate(true_bboxes_i):
iou = IoU_point_np(true_bbox, pred_bboxes_i)
# exclude matched bboxes
iou = iou * (1 - pred_matched)
# find matching
iou_max = np.max(iou)
if iou_max > iou_match:
true_matched[idx] = 1
pred_matched[np.argmax(iou)] = 1
positives[class_idx] = len(true_matched)
tp[class_idx] = np.sum(true_matched)
fp[class_idx] = np.sum(1 - pred_matched)
# input("wsbjkwkbg")
return positives, tp, fp
def decode_np(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = np.concatenate((
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
priors[:, 2:] * np.exp(loc[:, 2:] * variances[1])), axis=1)
boxes[:, :2] -= boxes[:, 2:] / 2
boxes[:, 2:] += boxes[:, :2]
return boxes
def perClass_iou_np(box, label, boxes, labels):
iou = IoU_point_np(box, boxes)
iou[labels != label] = 0.0
return iou
def IoU_point_np(box, boxes):
"""Find intersection over union
Args:
box: (tensor) One box [xmin,ymin,xmax,ymax]; Shape: [4].
boxes: (tensor) Shape:[N, 4].
Return:
Intersection over union. Shape: [N]
"""
A = np.maximum(box[:2], boxes[:, :2])
B = np.minimum(box[2:], boxes[:, 2:])
interArea = np.maximum(B[:, 0] - A[:, 0], 0) * np.maximum(B[:, 1] - A[:, 1], 0)
boxArea = (box[2] - box[0]) * (box[3] - box[1])
boxesArea = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
# compute the intersection over union
union = boxArea + boxesArea - interArea
iou = interArea / union
# return the intersection over union value
return iou
def nms_np(boxes, scores_all, overlap=0.5, top_k=200):
"""Apply non-maximum suppression at test time to avoid detecting too many
overlapping bounding boxes for a given object.
Args:
boxes: (tensor) The location preds for the img, Shape: [remaining_num, 4].
scores_all: (tensor) The class predscores for the img, Shape:[remaining_num, classes].
overlap: (float) The overlap thresh for suppressing unnecessary boxes.
top_k: (int) The Maximum number of box preds to consider.
Return:
The indices of the kept boxes with respect to num_priors.
"""
if boxes.shape[0] == 0:
return np.zeros((0, 4)), np.zeros((0)), []
scores = scores_all.max(axis=1)
labels = np.argmax(scores_all, axis=1)
idx = np.argsort(scores)[::-1]
top_k = min(top_k, len(boxes))
idx = idx[:top_k]
boxes = boxes[idx]
labels = labels[idx]
scores = scores[idx]
# box_x_min = np.minimum(boxes[:, 0], boxes[:, 2])[:, np.newaxis]
# box_x_max = np.maximum(boxes[:, 0], boxes[:, 2])[:, np.newaxis]
# box_y_min = np.minimum(boxes[:, 1], boxes[:, 3])[:, np.newaxis]
# box_y_max = np.maximum(boxes[:, 1], boxes[:, 3])[:, np.newaxis]
# fixed_boxes = np.concatenate((box_x_min, box_y_min, box_x_max, box_y_max), axis=1)
keep_boxes = np.zeros((top_k, 4))
keep_labels = np.zeros((top_k))
keep_scores = np.zeros((top_k))
# first box
keep_boxes[0] = boxes[0]
keep_labels[0] = labels[0]
keep_scores[0] = scores[0]
count = 1
i = 1
while i < top_k:
iou_compare = perClass_iou_np(boxes[i], labels[i], keep_boxes[:count], keep_labels[:count])
isIntersected = iou_compare > overlap
if not np.any(isIntersected):
keep_boxes[count] = boxes[i]
keep_labels[count] = labels[i]
keep_scores[count] = scores[i]
count += 1
i += 1
return keep_boxes[:count], keep_labels[:count], keep_scores[:count]