This repository has been archived by the owner on Jun 29, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathxie_siegmund_t1.m
60 lines (47 loc) · 1.83 KB
/
xie_siegmund_t1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
% Sequence multi-sensor change-point detection
% Yao Xie and David Siegmund
% Stopping rule T1
% Assumptions: observations are mutually independent and normally distributed with unit variances.
% if no change, mean = 0
function [statistic, change_point, detection_time] = xie_siegmund_t1(data, threshold, percentage_affected_sensors, mean_of_change, window_size)
% This method only works with positives changes of the mean
% Therefore, we get the absolute value of data
data = abs(data);
mean_of_change = abs(mean_of_change);
% Output values
statistic = [];
change_point = NaN;
detection_time = NaN;
% Loop control values
t = 1;
no_change = 1;
rows = size(data,1);
global shutdown;
while t<rows && no_change
values = [];
start = t-window_size; % window size
if start<1
start = 1;
end
for k=start:t
% Vector of p (# sensors) log-likelihoods of observations accumulated by time t>k
log_likelihood = sum(repmat(mean_of_change, t-k, 1).*data(k+1:t,:) - repmat((mean_of_change.^2)/2, t-k, 1), 1);
log_likelihood(log_likelihood<0) = 0; % positive part
% Global log-likelihood of all p sensors
arraylogs = sum(log(1 - percentage_affected_sensors + percentage_affected_sensors*exp(log_likelihood)));
values = [values arraylogs];
end
[maxValue, index] = max(values);
statistic = [statistic maxValue];
if ~shutdown
condition = maxValue > threshold;
else
condition = maxValue <= threshold;
end
if condition
change_point = index;
detection_time = t;
no_change = 0;
end
t = t+1;
end