-
Notifications
You must be signed in to change notification settings - Fork 0
/
colorthief.py
349 lines (286 loc) · 11.5 KB
/
colorthief.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# -*- coding: utf-8 -*-
"""
colorthief
~~~~~~~~~~
Grabbing the color palette from an image.
:copyright: (c) 2015 by Shipeng Feng.
:license: BSD, see LICENSE for more details.
"""
__version__ = '0.2.1'
from ctypes import *
import ctypes
import numpy as np
import matplotlib.pyplot as plt
import time
#from queue import PriorityQueue as PQueue
class cached_property(object):
"""Decorator that creates converts a method with a single
self argument into a property cached on the instance.
"""
def __init__(self, func):
self.func = func
def __get__(self, instance, type):
res = instance.__dict__[self.func.__name__] = self.func(instance)
return res
class ColorThief(object):
"""Color thief main class."""
def __init__(self, im):
"""Create one color thief for one image.
:param file: A filename (string) or a file object. The file object
must implement `read()`, `seek()`, and `tell()` methods,
and be opened in binary mode.
"""
self.image = im
#matplotlib.image.pil_to_array(pilImage)
#Load a PIL image and return it as a numpy array.
def get_color(self, quality=10):
"""Get the dominant color.
:param quality: quality settings, 1 is the highest quality, the bigger
the number, the faster a color will be returned but
the greater the likelihood that it will not be the
visually most dominant color
:return tuple: (r, g, b)
"""
color_count = 5 ####原先的程序中设置为5,为何?
##优化前0.032 优化之后是0.001+
width, height, channel = self.image.shape
pixels = np.reshape(self.image, (width*height, channel))
filt = np.arange(0, width * height, quality)
pixels = pixels[filt, :]
##0.0005+
valid_pixels = pixels[np.nonzero(((pixels[:, 0] <= 250) | (pixels[:, 1] <= 250) | (pixels[:, 2] <= 250)))[0], :]
valid_pixels = valid_pixels.astype(np.int32) # np.int32 -> np.int64: 会导致后面某些部分运算时间变短了
# Send array to quantize function which clusters values
# using median cut algorithm
dominant_color = MMCQ.quantize(valid_pixels, color_count)
return dominant_color
class MMCQ(object):
"""Basic Python port of the MMCQ (modified median cut quantization)
algorithm from the Leptonica library (http://www.leptonica.com/).
"""
SIGBITS = 7 #将颜色由RGB各8位压缩至5位
RSHIFT = 8 - SIGBITS
MAX_ITERATION = 1000
FRACT_BY_POPULATIONS = 0.75
@staticmethod
def get_histo(pixels):
"""histo (1-d array, giving the number of pixels in each quantized
region of color space)
"""
pixels = pixels >> MMCQ.RSHIFT #pixels矩阵中每个元素都右移
sz = pow(2, MMCQ.SIGBITS)
histo = np.zeros((sz, sz, sz), dtype='int32')
calcHist = ctypes.cdll.LoadLibrary("../calcHist.so")
dataPtr = pixels.ctypes.data_as(ctypes.c_char_p)
histoPtr = histo.ctypes.data_as(ctypes.c_char_p)
calcHist.calcHist(dataPtr, pixels.shape[0], histoPtr, sz)
return histo
@staticmethod
def vbox_from_pixels(pixels, histo):
rmin = 1000000
rmax = 0
gmin = 1000000
gmax = 0
bmin = 1000000
bmax = 0
pixels = pixels >> MMCQ.RSHIFT
rmin = min(pixels[:, 0].min(), rmin)
rmax = max(pixels[:, 0].max(), rmax)
gmin = min(pixels[:, 1].min(), gmin)
gmax = max(pixels[:, 1].max(), gmax)
bmin = min(pixels[:, 2].min(), bmin)
bmax = max(pixels[:, 2].max(), bmax)
return VBox(rmin, rmax, gmin, gmax, bmin, bmax, histo)
@staticmethod
def median_cut_apply(histo, vbox):
if not vbox.count:
return (None, None)
rw = vbox.r2 - vbox.r1 + 1
gw = vbox.g2 - vbox.g1 + 1
bw = vbox.b2 - vbox.b1 + 1
maxw = max([rw, gw, bw])
# only one pixel, no split
if vbox.count == 1:
return (vbox.copy, None)
# Find the partial sum arrays along the selected axis.
total = 0
partialsum = {}
lookaheadsum = {}
do_cut_color = None
indexes = []
if maxw == rw:
do_cut_color = 'r'
for i in range(vbox.r1, vbox.r2+1):
total += histo[i, vbox.g1:vbox.g2+1, vbox.b1:vbox.b2+1].sum()
partialsum[i] = total
elif maxw == gw:
do_cut_color = 'g'
for j in range(vbox.g1, vbox.g2+1):
total += histo[vbox.r1:vbox.r2+1, j, vbox.b1:vbox.b2+1].sum()
partialsum[j] = total
else: # maxw == bw
do_cut_color = 'b'
for k in range(vbox.b1, vbox.b2+1):
total += histo[vbox.r1:vbox.r2+1, vbox.g1:vbox.g2+1, k].sum()
partialsum[k] = total
for i, d in partialsum.items():
lookaheadsum[i] = total - d
# determine the cut planes
dim1 = do_cut_color + '1'
dim2 = do_cut_color + '2'
dim1_val = getattr(vbox, dim1)
dim2_val = getattr(vbox, dim2)
for i in range(dim1_val, dim2_val+1): ##循环次数小
if partialsum[i] > (total / 2):
vbox1 = vbox.copy
vbox2 = vbox.copy
left = i - dim1_val
right = dim2_val - i
if left <= right:
d2 = min([dim2_val - 1, int(i + right / 2)])
else:
d2 = max([dim1_val, int(i - 1 - left / 2)])
# avoid 0-count boxes
while not partialsum.get(d2, False): ##循环次数小
d2 += 1
count2 = lookaheadsum.get(d2)
while not count2 and partialsum.get(d2-1, False):
d2 -= 1
count2 = lookaheadsum.get(d2)
# set dimensions
setattr(vbox1, dim2, d2)
setattr(vbox2, dim1, getattr(vbox1, dim2) + 1)
return (vbox1, vbox2)
return (None, None)
@staticmethod
def quantize(pixels, max_color):
"""Quantize.
:param pixels: a list of pixel in the form (r, g, b)
:param max_color: max number of colors
"""
if not pixels.shape[0]:
raise Exception('Empty pixels when quantize.')
if max_color < 2 or max_color > 256:
raise Exception('Wrong number of max colors when quantize.')
########0.0004
histo = MMCQ.get_histo(pixels) ##c优化
# check that we aren't below maxcolors already
if len(histo) <= max_color:
# generate the new colors from the histo and return
pass
#########0.0002
# get the beginning vbox from the colors
vbox = MMCQ.vbox_from_pixels(pixels, histo)
pq = PQueue('x.count') #以count排序
pq.push(vbox)
# inner function to do the iteration
def iter_(lh, target):
n_color = 1
n_iter = 0
while n_iter < MMCQ.MAX_ITERATION:
vbox = lh.pop() ##这部分耗时:0.013 0.012 0.010等 #pop()远比push耗时,是因为pop()包含排序操作 改成for循环后,时间效率没有太大的变化
if not vbox.count: ##如果像素数为0 just put it back ##这部分耗时: e-06
lh.push(vbox)
n_iter += 1
return
#continue
# do the cut
##这部分耗时:0.009 0.007 0.006等
vbox1, vbox2 = MMCQ.median_cut_apply(histo, vbox)
##接下来这部分不耗时:8.82148742676e-06
if not vbox1:
raise Exception("vbox1 not defined; shouldn't happen!")
lh.push(vbox1)
if vbox2: # vbox2 can be null
lh.push(vbox2)
n_color += 1
if n_color >= target:
return
if n_iter > MMCQ.MAX_ITERATION:
return
n_iter += 1
###########0.001
# first set of colors, sorted by population
iter_(pq, MMCQ.FRACT_BY_POPULATIONS * max_color)
###这里不新建pq2,继续使用pq,不过修改排序规则
pq.set_sort_key('x.count*x.volume')
###########0.0002
# next set - generate the median cuts using the (npix * vol) sorting.
iter_(pq, max_color - pq.size())
#########0.0007
dominant_color = pq.pop().avg
return dominant_color
class VBox(object):
"""3d color space box"""
def __init__(self, r1, r2, g1, g2, b1, b2, histo):
self.r1 = r1
self.r2 = r2
self.g1 = g1
self.g2 = g2
self.b1 = b1
self.b2 = b2
self.histo = histo
@cached_property
def volume(self):
sub_r = self.r2 - self.r1
sub_g = self.g2 - self.g1
sub_b = self.b2 - self.b1
return (sub_r + 1) * (sub_g + 1) * (sub_b + 1)
@property
def copy(self):
return VBox(self.r1, self.r2, self.g1, self.g2,
self.b1, self.b2, self.histo)
@cached_property
def count(self):
npix = int(self.histo[self.r1:self.r2+1, self.g1:self.g2+1, self.b1:self.b2+1].sum()) #耗时e-05 如果使用 sum(histo_mat[lower_ind:upper_ind + 1, 1]) 耗时非常高
return npix
@cached_property
def avg(self):
mult = 1 << (8 - MMCQ.SIGBITS)
r_sum = 0
g_sum = 0
b_sum = 0
for i in range(self.r1, self.r2 + 1):
r_sum += self.histo[i, self.g1:self.g2 + 1, self.b1:self.b2 + 1].sum() * (i+0.5) * mult
for j in range(self.g1, self.g2 + 1):
g_sum += self.histo[self.r1:self.r2 + 1, j, self.b1:self.b2 + 1].sum() * (j+0.5) * mult
for k in range(self.b1, self.b2 + 1):
b_sum += self.histo[self.r1:self.r2 + 1, self.g1:self.g2 + 1, k].sum() * (k+0.5) * mult
if self.count:
r_avg = int(r_sum / self.count)
g_avg = int(g_sum / self.count)
b_avg = int(b_sum / self.count)
else:
r_avg = int(mult * (self.r1 + self.r2 + 1) / 2)
g_avg = int(mult * (self.g1 + self.g2 + 1) / 2)
b_avg = int(mult * (self.b1 + self.b2 + 1) / 2)
return r_avg, g_avg, b_avg
class PQueue(object):
"""Simple priority queue."""
def __init__(self, sort_key):
self.sort_key = sort_key
self.contents = [] ##用list实现PQ???
def set_sort_key(self, sort_key):
self.sort_key = sort_key
def push(self, o):
self.contents.append(o)
def pop(self):
ind = -1
max = -1
if self.sort_key == 'x.count': ##不排序,直接返回最大count对应的vbox
for i in range(self.size()):
cnt = self.contents[i].count
if cnt > max:
max = cnt
ind = i
elif self.sort_key == 'x.count*x.volume':
for i in range(self.size()):
cnt = self.contents[i].count * self.contents[i].volume
if cnt > max:
max = cnt
ind = i
ret = self.contents[ind]
del self.contents[ind]
return ret
def size(self):
return len(self.contents)