-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatahandler.py
98 lines (79 loc) · 5.01 KB
/
datahandler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import torchvision
import torchvision.transforms as transforms
import torch.utils.data
import random
import numpy as np
def get_class_i_indices(y, i):
y = np.array(y)
pos_i = np.argwhere(y == i)
pos_i = list(pos_i[:, 0])
random.shuffle(pos_i)
return pos_i
def get_indices(dataset, class_name):
indices = []
for i in range(len(dataset.targets)):
if dataset.targets[i] == class_name:
indices.append(i)
random.shuffle(indices)
return indices
def dict_indices(dataset):
idx_classes = {}
for i in range(10):
idx_classes[i] = get_indices(dataset, i)
return idx_classes
def get_indx_balanced_train_subset(dict_indices, k):
# print(len(dict_indices[0]))
indx_balanced_subset = []
for i in range(10):
p10_idx = len(dict_indices[i]) // 10
# print(p10_idx)
indx_balanced_subset += dict_indices[i][k:k + p10_idx]
return indx_balanced_subset
def get_indx_balanced_test_subset(dict_indices, k):
indx_balanced_subset = []
for i in range(10):
indx_balanced_subset += dict_indices[i][k:k + 100]
return indx_balanced_subset
def get_subset_data(y_train, y_test):
classDict = {'plane': 0, 'car': 1, 'bird': 2, 'cat': 3, 'deer': 4, 'dog': 5, 'frog': 6, 'horse': 7, 'ship': 8,
'truck': 9}
plane_indices = get_class_i_indices(y_train, classDict['plane'])
car_indices = get_class_i_indices(y_train, classDict['car'])
bird_indices = get_class_i_indices(y_train, classDict['bird'])
cat_indices = get_class_i_indices(y_train, classDict['cat'])
deer_indices = get_class_i_indices(y_train, classDict['deer'])
dog_indices = get_class_i_indices(y_train, classDict['dog'])
frog_indices = get_class_i_indices(y_train, classDict['frog'])
horse_indices = get_class_i_indices(y_train, classDict['horse'])
ship_indices = get_class_i_indices(y_train, classDict['ship'])
truck_indices = get_class_i_indices(y_train, classDict['truck'])
plane_indices_test = get_class_i_indices(y_test, classDict['plane'])
car_indices_test = get_class_i_indices(y_test, classDict['car'])
bird_indices_test = get_class_i_indices(y_test, classDict['bird'])
cat_indices_test = get_class_i_indices(y_test, classDict['cat'])
deer_indices_test = get_class_i_indices(y_test, classDict['deer'])
dog_indices_test = get_class_i_indices(y_test, classDict['dog'])
frog_indices_test = get_class_i_indices(y_test, classDict['frog'])
horse_indices_test = get_class_i_indices(y_test, classDict['horse'])
ship_indices_test = get_class_i_indices(y_test, classDict['ship'])
truck_indices_test = get_class_i_indices(y_test, classDict['truck'])
subset_indices_1 = plane_indices[0:500] + car_indices[0:500] + bird_indices[0:500] + cat_indices[0:500] + deer_indices[
0:500] + dog_indices[
0:500] + frog_indices[
0:500] + horse_indices[
0:500] + ship_indices[
0:500] + truck_indices[
0:500]
subset_indices_test_1 = plane_indices_test[0:100] + car_indices_test[0:100] + bird_indices_test[
0:100] + cat_indices_test[
0:100] + deer_indices_test[
0:100] + dog_indices_test[
0:100] + frog_indices_test[
0:100] + horse_indices_test[
0:100] + ship_indices_test[
0:100] + truck_indices_test[
0:100]
return subset_indices_1, subset_indices_test_1
trainset_1 = torch.utils.data.Subset(trainset, subset_indices_1)
testset_1 = torch.utils.data.Subset(testset, subset_indices_test_1)