forked from advanced-microcode-patching/shiva
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshiva_ulexec.c
516 lines (485 loc) · 14.4 KB
/
shiva_ulexec.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
#include "shiva.h"
#define SHIVA_AUXV_COUNT 19
uint8_t *
shiva_ulexec_allocstack(struct shiva_ctx *ctx)
{
ctx->ulexec.stack = mmap(NULL, SHIVA_STACK_SIZE, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_GROWSDOWN, -1, 0);
assert(ctx->ulexec.stack != MAP_FAILED);
shiva_debug("STACK: %#lx - %#lx\n", (uint64_t)ctx->ulexec.stack,
(uint64_t)ctx->ulexec.stack + (size_t)SHIVA_STACK_SIZE);
return (ctx->ulexec.stack + SHIVA_STACK_SIZE);
}
/*
* Remember the layout:
* argc, argv[0], argv[N], NULL, envp[0], envp[N], auxv_entry[0], auxv_entry[N], .ascii data
* \______________________________________________________________________/
*
*/
static bool
shiva_ulexec_build_auxv_stack(struct shiva_ctx *ctx, uint64_t *out, Elf64_auxv_t **auxv_ptr)
{
uint64_t *esp;
uint64_t esp_start;
int i, totalsize, len, argc;
uint8_t *stack;
char *strdata, *s;
shiva_auxv_iterator_t a_iter;
struct shiva_auxv_entry a_entry;
size_t count = 0;
count += sizeof(argc);
count += ctx->argc * sizeof(char *);
count += sizeof(void *);
count += ctx->ulexec.envpcount * sizeof(char *);
count += sizeof(void *);
count += (SHIVA_AUXV_COUNT + 1) * sizeof(Elf64_auxv_t);
count = (count + 16) & ~(16 - 1);
totalsize = count + ctx->ulexec.envplen + ctx->ulexec.arglen;
totalsize = (totalsize + 16) & ~(16 - 1);
stack = shiva_ulexec_allocstack(ctx);
if (stack == NULL) {
fprintf(stderr, "Unable to allocate stack\n");
return false;
}
shiva_debug("STACK: %p\n", stack);
esp = (uint64_t *)stack;
esp = esp - (totalsize / sizeof(void *));
esp_start = (uint64_t)esp;
/*
* strdata points to the end of the auxiliary vector
* where it must copy the ascii data into place. This
* data was copied into ctx->ulexec.argstr earlier in
* the shiva_ulexec_save_stack() function.
*/
strdata = (char *)(esp_start + count);
s = ctx->ulexec.argstr;
*esp++ = ctx->argc;
for (argc = ctx->argc; argc > 0; argc--) {
strcpy(strdata, s);
len = strlen(s) + 1;
s += len;
*esp++ = (uintptr_t)strdata; /* set argv[n] = (char *)"arg_string" */
strdata += len;
}
/*
* Append NULL after last argv ptr
*/
*esp++ = (uintptr_t)0; // Our stack currently: argc, argv[0], argv[n], NULL
/*
* Copyin envp pointers and envp ascii data
*/
for (s = ctx->ulexec.envstr, i = 0; i < ctx->ulexec.envpcount; i++) {
strcpy(strdata, s);
len = strlen(s) + 1;
s += len;
*esp++ = (uintptr_t)strdata;
strdata += len;
}
*esp++ = (uintptr_t)0;
Elf64_auxv_t *auxv = (Elf64_auxv_t *)esp;
*auxv_ptr = auxv;
shiva_auxv_iterator_init(ctx, &a_iter, NULL);
while (shiva_auxv_iterator_next(&a_iter, &a_entry) == SHIVA_ITER_OK) {
auxv->a_type = a_entry.type;
switch(a_entry.type) {
case AT_PHDR:
auxv->a_un.a_val = ctx->ulexec.phdr_vaddr;
break;
case AT_PHNUM:
auxv->a_un.a_val = elf_segment_count(&ctx->elfobj);
break;
case AT_BASE:
auxv->a_un.a_val = ctx->ulexec.ldso.base_vaddr;
break;
case AT_ENTRY:
auxv->a_un.a_val = ctx->ulexec.entry_point;
break;
case AT_EXECFN:
auxv->a_un.a_val = (uint64_t)(char *)ctx->path;
break;
case AT_FLAGS:
/*
* SPECIAL NOTE: We overwrite the flags entry with
* a saved pointer to the shiva_ctx_t *ctx. This is
* then passed into %rdi before calling the module
* code.
*/
//auxv->a_un.a_val = DT_BIND_NOW; //(uint64_t)ctx;
//break;
default:
auxv->a_un.a_val = a_entry.value;
break;
}
auxv++;
}
auxv->a_type = AT_NULL;
/*
* Set the out value to the stack address that is &argc -- the beginning
* of our stack setup.
*/
*out = (uint64_t)esp_start;
return esp_start;
}
static bool
shiva_ulexec_save_stack(struct shiva_ctx *ctx)
{
size_t sz, i, j, tmp;
char **envpp = ctx->envp;
char *s;
for (i = 0, sz = 0, tmp = ctx->argc; tmp > 0; tmp--, i++)
sz += strlen(ctx->argv[i]) + 1;
ctx->ulexec.arglen = sz;
for (i = 0, sz = 0; *envpp != NULL; envpp++, i++)
sz += strlen(*envpp) + 1;
ctx->ulexec.envpcount = i;
ctx->ulexec.envplen = sz;
ctx->ulexec.envstr = malloc(ctx->ulexec.envplen);
if (ctx->ulexec.envstr == NULL) {
perror("malloc");
return false;
}
ctx->ulexec.argstr = malloc(ctx->ulexec.arglen);
if (ctx->ulexec.argstr == NULL) {
perror("malloc");
return false;
}
for (s = ctx->ulexec.argstr, j = 0, i = 0; i < ctx->argc; i++) {
shiva_debug("Copying bytes from %s\n", ctx->argv[i]);
while (j < strlen(ctx->argv[i])) {
s[j] = ctx->argv[i][j];
j++;
}
s[j] = '\0';
s += strlen(ctx->argv[i]) + 1;
j = 0;
}
for (i = 0; *ctx->envp != NULL; ctx->envp++) {
strcpy(&ctx->ulexec.envstr[i], *ctx->envp);
i += strlen(*ctx->envp) + 1;
}
return true;
}
static inline int
shiva_ulexec_make_prot(uint32_t p_flags)
{
int prot = 0;
if (p_flags & PF_R)
prot |= PROT_READ;
if (p_flags & PF_W)
prot |= PROT_WRITE;
if (p_flags & PF_X)
prot |= PROT_EXEC;
return prot;
}
/*
* Copy p_filesz bytes of the PT_LOAD segment (3rd arg) into
* the buffer specified by dst (2nd arg).
*/
static bool
shiva_ulexec_segment_copy(elfobj_t *elfobj, uint8_t *dst,
struct elf_segment segment)
{
size_t rem = segment.filesz % sizeof(uint64_t);
uint64_t qword;
bool res;
size_t i = 0;
shiva_debug("Remainder: %d bytes\n", rem);
shiva_debug("Reading from address %#lx - %#lx\n", segment.vaddr,
segment.vaddr + segment.filesz);
for (i = 0; i < segment.filesz; i += sizeof(uint64_t)) {
if (i + sizeof(uint64_t) >= segment.filesz) {
size_t j;
for (j = 0; j < rem; j++) {
res = elf_read_address(elfobj, segment.vaddr + i + j,
&qword, ELF_BYTE);
if (res == false) {
shiva_debug("shiva_ulexec_segment_copy "
"failed at %#lx\n", segment.vaddr + i + j);
return false;
}
dst[i + j] = (uint8_t)qword;
}
break;
}
res = elf_read_address(elfobj, segment.vaddr + i, &qword, ELF_QWORD);
if (res == false) {
shiva_debug("elf_read_address failed at %#lx\n", segment.vaddr + i);
return false;
}
*(uint64_t *)&dst[i] = qword;
}
return true;
}
bool
shiva_ulexec_total_segment_len(elfobj_t *elfobj, size_t *len)
{
struct elf_segment phdr;
elf_segment_iterator_t phdr_iter;
elf_iterator_res_t res;
size_t count = 0;
size_t last_memsz;
uint64_t first_vaddr, last_vaddr;
elf_segment_iterator_init(elfobj, &phdr_iter);
for (;;) {
res = elf_segment_iterator_next(&phdr_iter, &phdr);
if (res == ELF_ITER_ERROR)
return false;
if (res == ELF_ITER_DONE)
break;
if (phdr.type == PT_LOAD) {
if (count++ == 0) {
first_vaddr = phdr.vaddr;
} else {
last_vaddr = phdr.vaddr;
last_memsz = phdr.memsz;
}
}
}
*len = last_vaddr + last_memsz - ELF_PAGESTART(first_vaddr);
shiva_debug("Total mapping size: %#zu\n", *len);
return true;
}
bool
shiva_ulexec_get_orig_interp(struct shiva_ctx *ctx, char *outbuf)
{
struct elf_dynamic_entry dyn;
elf_dynamic_iterator_t dyn_iter;
size_t len;
bool res;
elf_dynamic_iterator_init(&ctx->elfobj, &dyn_iter);
while (elf_dynamic_iterator_next(&dyn_iter, &dyn) == ELF_ITER_OK) {
if (dyn.tag != SHIVA_DT_ORIG_INTERP)
continue;
res = shiva_target_copy_string(ctx, outbuf,
(const char *)dyn.value, &len);
if (res == false) {
fprintf(stderr, "shiva_target_copy_string() failed at %#lx\n",
dyn.value);
return false;
}
break;
}
return true;
}
/*
* XXX -- We currently only support PIE binaries. This is very temporary.
*/
bool
shiva_ulexec_load_elf_binary(struct shiva_ctx *ctx, elfobj_t *elfobj, bool interpreter)
{
bool res;
elf_iterator_res_t ires;
elf_segment_iterator_t phdr_iter;
struct elf_segment phdr;
uint64_t load_addr;
uint64_t base_vaddr, last_vaddr;
uint8_t *mem;
size_t memsz, total_segment_len, last_memsz, last_filesz;
int fd = elf_fd(elfobj);
uint64_t k = 0, brk_addr = 0;
uint64_t elf_bss = 0, last_bss = 0;
elf_segment_iterator_init(elfobj, &phdr_iter);
for (;;) {
uint32_t elfprot;
ires = elf_segment_iterator_next(&phdr_iter, &phdr);
if (ires == ELF_ITER_DONE)
break;
if (ires == ELF_ITER_ERROR)
return false;
if (phdr.type != PT_LOAD)
continue;
elfprot = shiva_ulexec_make_prot(phdr.flags);
if (elfprot & PROT_READ)
shiva_debug("PROT_READ\n");
if (elfprot & PROT_WRITE)
shiva_debug("PROT_WRITE\n");
if (elfprot & PROT_EXEC)
shiva_debug("PROT_EXEC\n");
int mmap_flags = MAP_PRIVATE|MAP_FIXED;
base_vaddr = (interpreter == true ? SHIVA_LDSO_BASE : SHIVA_TARGET_BASE);
shiva_debug("base map address: %#lx\n", base_vaddr);
if (phdr.offset == 0) {
/*
* If we are mapping an interpreter (i.e. ld-linux.so)
* then we should follow the wisdom from binfmt_elf.c:
* static unsigned long elf_map():line:363 --
*
* While mapping the very first segment (phdr.offset == 0)
* we _first_ mmap needs to know the full size, otherwise
* randomization might put this image into an overlapping
* position with the ELF binary image... - and unmap the
* remainder at the end.
*/
if (interpreter == true) {
if (shiva_ulexec_total_segment_len(elfobj,
&total_segment_len) == false) {
fprintf(stderr, "shiva_ulexec_total_segment_len() failed\n");
return false;
}
total_segment_len =
ELF_PAGEALIGN(total_segment_len, 4096);
shiva_debug("total_segment_len of RTLD: %d\n", total_segment_len);
mem = mmap((void *)base_vaddr, total_segment_len,
elfprot, mmap_flags, fd, 0);
if (mem == MAP_FAILED) {
perror("mmap");
exit(EXIT_FAILURE);
}
(void) munmap(mem + phdr.memsz,
total_segment_len - phdr.memsz);
base_vaddr = (uint64_t)mem;
shiva_debug("Mapped interpreter base: %#lx\n", base_vaddr);
continue;
}
/*
* If the elfobj we are mapping is not an interpreter
* then we probably don't have to worry about the
* steps in the block of code above. We can just map
* the segment with mmap.
*/
shiva_debug("Mapping %#lx\n", base_vaddr);
mem = mmap((void *)base_vaddr, phdr.filesz + ELF_PAGEOFFSET(phdr.vaddr),
elfprot, mmap_flags, fd, phdr.offset - ELF_PAGEOFFSET(phdr.vaddr));
if (mem == MAP_FAILED) {
perror("mmap");
exit(EXIT_FAILURE);
}
base_vaddr = (uint64_t)mem;
continue;
}
/*
* All PT_LOAD segments after the first one
* are mapped here.
*/
load_addr = base_vaddr + phdr.vaddr;
load_addr = ELF_PAGESTART(load_addr);
memsz = phdr.memsz;
size_t segment_len = phdr.filesz + ELF_PAGEOFFSET(phdr.vaddr);
segment_len = ELF_PAGEALIGN(segment_len, 0x1000);
mem = mmap((void *)load_addr, segment_len,
elfprot, mmap_flags, fd,
phdr.offset - ELF_PAGEOFFSET(phdr.vaddr));
if (mem == MAP_FAILED) {
perror("mmap");
exit(EXIT_FAILURE);
}
last_filesz = phdr.filesz;
last_memsz = phdr.memsz;
last_vaddr = phdr.vaddr;
k = (uint64_t)mem + phdr.filesz + ELF_PAGEOFFSET(phdr.vaddr);
if (k > elf_bss)
elf_bss = k;
k = (uint64_t)mem + phdr.memsz + ELF_PAGEOFFSET(phdr.vaddr);
if (k > last_bss)
last_bss = k;
}
/*
* Initialize .bss
*/
size_t nbyte;
nbyte = ELF_PAGEOFFSET(elf_bss);
if (nbyte > 0) {
nbyte = 4096 - nbyte;
memset((void *)elf_bss, 0, nbyte);
}
/*
* If the .bss extends beyond the current page of .data
* we must add an anonymous memory mapping to create the
* rest of the .bss
*/
elf_bss = ELF_PAGEALIGN(elf_bss, 0x1000);
last_bss = ELF_PAGEALIGN(last_bss, 0x1000);
if (last_bss > elf_bss) {
mem = mmap((void *)elf_bss, last_bss - elf_bss,
PROT_READ|PROT_WRITE, MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (mem == MAP_FAILED) {
perror("mmap .bss");
exit(EXIT_FAILURE);
}
}
if (interpreter == false) {
shiva_debug("Setting entry point for target: %#lx\n", base_vaddr + elf_entry_point(elfobj));
ctx->ulexec.entry_point = base_vaddr + elf_entry_point(elfobj);
ctx->ulexec.base_vaddr = base_vaddr;
ctx->ulexec.phdr_vaddr = base_vaddr + elf_phoff(elfobj);
} else {
shiva_debug("base_vaddr: %#lx\n", base_vaddr);
shiva_debug("Setting entry point for ldso: %#lx\n", base_vaddr + elf_entry_point(elfobj));
ctx->ulexec.ldso.entry_point = base_vaddr + elf_entry_point(elfobj);
ctx->ulexec.ldso.base_vaddr = base_vaddr;
ctx->ulexec.ldso.phdr_vaddr = base_vaddr + elf_phoff(elfobj);
}
return true;
}
bool
shiva_ulexec_prep(struct shiva_ctx *ctx)
{
char *interp = NULL;
elf_error_t error;
shiva_auxv_iterator_t a_iter;
struct shiva_auxv_entry a_entry;
if (elf_linking_type(&ctx->elfobj) == ELF_LINKING_DYNAMIC) {
/*
* If the target binary is has been shiva-prelinked already,
* then it's PT_INTERP segment will contain /lib/shiva. We
* need the path of it's original interpreter "ld-linux.so"
* so that we can prepare to map it into memory.
*/
if (shiva_target_has_prelinking(ctx) == true) {
char interp_path[PATH_MAX];
if (shiva_ulexec_get_orig_interp(ctx, interp_path) == false) {
fprintf(stderr, "shiva_target_get_orig_interp() failed\n");
return false;
}
interp = interp_path;
} else {
interp = elf_interpreter_path(&ctx->elfobj);
if (interp == NULL) {
fprintf(stderr, "elf_interpreter_path() failed\n");
return false;
}
}
if (interp != NULL) {
shiva_debug("Interp path: %s\n", interp);
ctx->ulexec.flags |= SHIVA_F_ULEXEC_LDSO_NEEDED;
if (elf_open_object(interp, &ctx->ldsobj, ELF_LOAD_F_STRICT, &error)
== false) {
fprintf(stderr, "elf_open_object(%s, ...) failed: %s\n",
interp, elf_error_msg(&error));
return false;
}
}
}
shiva_debug("Loading ELF binary: %s\n", elf_pathname(&ctx->elfobj));
if (shiva_ulexec_load_elf_binary(ctx, &ctx->elfobj, false) == false) {
fprintf(stderr, "shiva_ulexec_load_elf_binary(%p, %s, false) failed\n",
ctx, elf_pathname(&ctx->elfobj));
return false;
}
if (ctx->ulexec.flags & SHIVA_F_ULEXEC_LDSO_NEEDED) {
shiva_debug("Loading LDSO: %s\n", elf_pathname(&ctx->ldsobj));
if (shiva_ulexec_load_elf_binary(ctx, &ctx->ldsobj, true) == false) {
fprintf(stderr, "shiva_ulexec_load_elf_binary(%p, %s, true) failed\n",
ctx, elf_pathname(&ctx->ldsobj));
return false;
}
}
shiva_debug("Saving stack data from &argc foward\n");
if (shiva_ulexec_save_stack(ctx) == false) {
fprintf(stderr, "shiva_ulexec_save_stack() failed\n");
return false;
}
shiva_debug("Building auxiliary vector\n");
if (shiva_ulexec_build_auxv_stack(ctx, &ctx->ulexec.rsp_start,
(Elf64_auxv_t **)&ctx->ulexec.auxv.vector) == false) {
fprintf(stderr, "shiva_ulexec_build_auxv_stack() failed\n");
return false;
}
#if 0
shiva_auxv_iterator_init(ctx, &a_iter, ctx->ulexec.auxv.vector);
while (shiva_auxv_iterator_next(&a_iter, &a_entry) == SHIVA_ITER_OK) {
printf("AUXV TYPE: %d AUXV VAL: %#lx\n", a_entry.type, a_entry.value);
}
#endif
return true;
}