forked from siddhartha-gadgil/ProvingGround
-
Notifications
You must be signed in to change notification settings - Fork 1
/
recsess.sc
134 lines (112 loc) · 3.12 KB
/
recsess.sc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import provingground._
import HoTT._
import TLImplicits._
val Bool = "Boolean" :: Type
val BoolInd = "true" ::: Bool |: "false" ::: Bool =: Bool
val List(tt, ff) = BoolInd.intros
tt
ff
BoolInd.rec(Bool)
val recBoolBool = BoolInd.rec(Bool)
recBoolBool.typ
import Fold._
val not = recBoolBool(ff)(tt)
not(ff)
not(tt)
assert(not(ff) == tt && not(tt) == ff)
val b= "b" :: Bool
val recBBB = BoolInd.rec(Bool ->: Bool)
recBBB.typ
val and = recBBB(lmbda(b)(b))(lmbda(b)(ff))
and(tt)(tt)
and(tt)(ff)
and(ff)(ff)
and(ff)(tt)
assert(and(tt)(tt)== tt && and(tt)(ff) == ff && and(ff)(tt) == ff && and(ff)(ff) == ff)
val Nat ="Nat" :: Type
val NatInd = ("0" ::: Nat) |: ("succ" ::: Nat -->>: Nat) =: Nat
val List(zero, succ) = NatInd.intros
val recNatBool = NatInd.rec(Bool)
recNatBool.typ
val n = "n" :: Nat
val even = recNatBool(tt)(n :-> (b :-> not(b)))
val one = succ(zero)
val two = succ(one)
val three = succ(two)
val four = succ(three)
even(two)
even(three)
val recNNN = NatInd.rec(Nat ->: Nat)
recNNN.typ
val m = "m" :: Nat
val addn ="add(n)" :: Nat ->: Nat
val add = recNNN(m :-> m)(n :-> (addn :-> (m :-> (succ(addn(m))) ) ) )
add(two)(one)
assert(add(two)(one) == three)
add(two)(two) == four
val A ="A" :: Type
val ListA = "List(A)" :: Type
val ListAInd = ("nil" ::: ListA) |: ("cons" ::: A ->>: ListA -->>: ListA ) =: ListA
val List(nil, cons) = ListAInd.intros
val recLN = ListAInd.rec(Nat)
recLN.typ
val a = "a" :: A
val l = "l" :: ListA
val size = recLN(zero)(a :-> (l :-> (n :-> (succ(n)))))
size(nil)
size(cons(a)(cons(a)(nil)))
val T ="Tree" :: Type
val TInd = ("leaf" ::: T) |: ("node" ::: T -->>: T -->>: T) =: T
val List(leaf, node) = TInd.intros
import Fold._
val t = node(node(leaf)(node(leaf)(leaf)))(node(leaf)(leaf))
val recTN = TInd.rec(Nat)
recTN.typ
val t1 = "t1" :: T
val t2 = "t2" :: T
val vertices = recTN(one)(t1 :-> (m :->( t2 :-> (n :-> (succ(add(n)(m)) ) ) ) ) )
vertices(t)
val nine = succ(add(four)(four))
vertices(t) == nine
assert(vertices(t) == nine)
val BT ="BinTree" :: Type
val BTInd = ("leaf" ::: BT) |: ("node" ::: (Bool -|>: BT) -->>: BT ) =: BT
val List(bleaf, bnode) = BTInd.intros
val recBTN = BTInd.rec(Nat)
recBTN.typ
val f = "f" :: Bool ->: BT
val g = "g" :: Bool ->: Nat
val leaves = recBTN(one)(f :-> (g :-> (add(g(ff))(g(tt))) ))
leaves(bleaf)
val T1 = bnode(b :-> bleaf)
val recBBT = BoolInd.rec(BT)
recBBT.typ
val tn = recBBT(bleaf)(T1)
val T2 = bnode(tn)
leaves(T2)
import FansiShow._
val recNN = NatInd.rec(Nat)
val double = recNN(zero)(m :-> (n :-> (succ(succ(n)))))
double(two) == four
assert(double(two) == four)
double(succ(n))
val sumTo = recNN(zero)(m :-> (n :-> (add(succ(m))(n))))
sumTo(one)
sumTo(three).fansi
val ten = succ(nine)
sumTo(four) == ten
assert(sumTo(four) == ten)
val isEven = "isEven" :: Nat ->: Type
val zeroEven = "0even" :: isEven(zero)
val plusTwoEven = "_+2even" :: (n ~>: (isEven(n) ->: isEven(succ(succ(n)))))
val thmDoubleEven = n ~>: isEven(double(n))
val hyp = "isEven(double(n))" :: isEven(double(n))
val pfDoubleEven =
NatInd.induc(n :-> isEven(double(n))){
zeroEven}{
n :~> (
hyp :-> (
plusTwoEven(double(n))(hyp)
)
)
} !: thmDoubleEven