-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest.py
executable file
·234 lines (190 loc) · 7.26 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# -*- coding: utf-8 -*-
from __future__ import print_function, division
from datasets.queryDataset import Dataset_query, Query_transforms
import argparse
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import numpy as np
from torchvision import datasets, models, transforms
import time
import os
import scipy.io
import yaml
import math
from tool.utils import load_network
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--gpu_ids', default='0', type=str,
help='gpu_ids: e.g. 0 0,1,2 0,2')
parser.add_argument(
'--test_dir', default='', type=str, help='./test_data')
parser.add_argument('--name', default='',
type=str, help='save model path')
parser.add_argument('--checkpoint', default='net_119.pth',
type=str, help='save model path')
parser.add_argument('--batchsize', default=128, type=int, help='batchsize')
parser.add_argument('--h', default=256, type=int, help='height')
parser.add_argument('--w', default=256, type=int, help='width')
parser.add_argument('--ms', default='1', type=str,
help='multiple_scale: e.g. 1 1,1.1 1,1.1,1.2')
parser.add_argument('--num_worker', default=4, type=int,help='')
parser.add_argument('--mode',default='1', type=int,help='1:drone->satellite 2:satellite->drone')
opt = parser.parse_args()
print(opt.name)
###load config###
# load the training config
config_path = 'opts.yaml'
with open(config_path, 'r') as stream:
config = yaml.load(stream, Loader=yaml.FullLoader)
for cfg, value in config.items():
setattr(opt, cfg, value)
str_ids = opt.gpu_ids.split(',')
test_dir = opt.test_dir
gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
gpu_ids.append(id)
print('We use the scale: %s' % opt.ms)
str_ms = opt.ms.split(',')
ms = []
for s in str_ms:
s_f = float(s)
ms.append(math.sqrt(s_f))
if len(gpu_ids) > 0:
torch.cuda.set_device(gpu_ids[0])
cudnn.benchmark = True
data_transforms = transforms.Compose([
transforms.Resize((opt.h, opt.w), interpolation=3),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
data_query_transforms = transforms.Compose([
transforms.Resize((opt.h, opt.w), interpolation=3),
# Query_transforms(pad=10,size=opt.w),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
data_dir = test_dir
image_datasets_query = {x: datasets.ImageFolder(os.path.join(
data_dir, x), data_query_transforms) for x in ['query_drone']}
image_datasets_gallery = {x: datasets.ImageFolder(os.path.join(
data_dir, x), data_transforms) for x in ['gallery_satellite']}
image_datasets = {**image_datasets_query, **image_datasets_gallery}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=opt.batchsize,
shuffle=False, num_workers=opt.num_worker) for x in ['gallery_satellite', 'query_drone']}
use_gpu = torch.cuda.is_available()
def fliplr(img):
'''flip horizontal'''
inv_idx = torch.arange(img.size(3)-1, -1, -1).long() # N x C x H x W
img_flip = img.index_select(3, inv_idx)
return img_flip
def which_view(name):
if 'satellite' in name:
return 1
elif 'street' in name:
return 2
elif 'drone' in name:
return 3
else:
print('unknown view')
return -1
def extract_feature(model, dataloaders, view_index=1):
features = torch.FloatTensor()
count = 0
for data in tqdm(dataloaders):
img, _ = data
batchsize = img.size()[0]
count += batchsize
# if opt.LPN:
# # ff = torch.FloatTensor(n,2048,6).zero_().cuda()
# ff = torch.FloatTensor(n,512,opt.block).zero_().cuda()
# else:
# ff = torch.FloatTensor(n, 2048).zero_().cuda()
for i in range(2):
if(i == 1):
img = fliplr(img)
input_img = Variable(img.cuda())
if view_index == 1:
outputs, _ = model(input_img, None)
elif view_index == 3:
_, outputs = model(None, input_img)
outputs = outputs[1]
if i == 0:
ff = outputs
else:
ff += outputs
# norm feature
if len(ff.shape) == 3:
# feature size (n,2048,6)
# 1. To treat every part equally, I calculate the norm for every 2048-dim part feature.
# 2. To keep the cosine score==1, sqrt(6) is added to norm the whole feature (2048*6).
fnorm = torch.norm(ff, p=2, dim=1, keepdim=True) * \
np.sqrt(opt.block)
ff = ff.div(fnorm.expand_as(ff))
ff = ff.view(ff.size(0), -1)
else:
fnorm = torch.norm(ff, p=2, dim=1, keepdim=True)
ff = ff.div(fnorm.expand_as(ff))
features = torch.cat((features, ff.data.cpu()), 0)
return features
def get_id(img_path):
camera_id = []
labels = []
paths = []
for path, v in img_path:
folder_name = os.path.basename(os.path.dirname(path))
labels.append(int(folder_name))
paths.append(path)
return labels, paths
######################################################################
# Load Collected data Trained model
print('-------test-----------')
model = load_network(opt)
print("这是%s的结果" % opt.checkpoint)
# model.classifier.classifier = nn.Sequential()
model = model.eval()
if use_gpu:
model = model.cuda()
# Extract feature
since = time.time()
if opt.mode == 1:
query_name = 'query_drone'
gallery_name = 'gallery_satellite'
elif opt.mode == 2:
query_name = 'query_satellite'
gallery_name = 'gallery_drone'
else:
raise Exception("opt.mode is not required")
which_gallery = which_view(gallery_name)
which_query = which_view(query_name)
print('%d -> %d:' % (which_query, which_gallery))
print(query_name.split("_")[-1], "->", gallery_name.split("_")[-1])
gallery_path = image_datasets[gallery_name].imgs
query_path = image_datasets[query_name].imgs
gallery_label, gallery_path = get_id(gallery_path)
query_label, query_path = get_id(query_path)
if __name__ == "__main__":
with torch.no_grad():
query_feature = extract_feature(
model, dataloaders[query_name], which_query)
gallery_feature = extract_feature(
model, dataloaders[gallery_name], which_gallery)
# For street-view image, we use the avg feature as the final feature.
time_elapsed = time.time() - since
print('Test complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
with open('inference_time.txt', 'w') as F:
F.write('Test complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
# Save to Matlab for check
result = {'gallery_f': gallery_feature.numpy(), 'gallery_label': gallery_label, 'gallery_path': gallery_path,
'query_f': query_feature.numpy(), 'query_label': query_label, 'query_path': query_path}
scipy.io.savemat('pytorch_result_{}.mat'.format(opt.mode), result)
# print(opt.name)
# result = 'result.txt'
# os.system('python evaluate_gpu.py | tee -a %s'%result)