-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
362 lines (310 loc) · 14.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# -*- coding: utf-8 -*-
import argparse
import torch
from torch.autograd import Variable
from torch.cuda.amp import GradScaler
import torch.backends.cudnn as cudnn
import time
from optimizers.make_optimizer import make_optimizer
from torch.cuda.amp import autocast
from models.taskflow import make_model
from datasets.make_dataloader import make_dataset
from losses.make_loss import make_loss
from tool.utils_server import calc_flops_params, save_network, copyfiles2checkpoints, get_logger, TensorBoardManager
from tool.evaltools import evaluate
from tqdm import tqdm
import numpy as np
import cv2
import random
import os
import json
from collections import defaultdict
from tool.evaltools import Distance
from mmcv import Config
import datetime
def create_hanning_mask(center_R):
hann_window = np.outer( # np.outer 如果a,b是高维数组,函数会自动将其flatten成1维 ,用来求外积
np.hanning(center_R+2),
np.hanning(center_R+2))
hann_window /= hann_window.sum()
return hann_window[1:-1, 1:-1]
def get_config():
parser = argparse.ArgumentParser(description='Training')
parser.add_argument(
'--config', default='configs/#Structure/ViTS_CCN_SA_Balance_cr1_nw15_attentionlayer4_positionmbedding.py',
type=str, help='config filename')
parser.add_argument('--gpu_ids', default='0', type=str,
help='gpu_ids: e.g. 0 0,1,2 0,2')
parser.add_argument('--name', default="test",
type=str, help='output model name')
opt = parser.parse_args()
if opt.name == "":
opt.name = opt.config.split("/")[-1].split(".py")[0].split("configs/")[-1]
print(opt.name)
cfg = Config.fromfile(opt.config)
for key, value in cfg.items():
setattr(opt, key, value)
return opt
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = True
random.seed(seed)
def setup_device(opt):
str_ids = opt.gpu_ids.split(',')
gpu_ids = []
for str_id in str_ids:
gid = int(str_id)
if gid >= 0:
gpu_ids.append(gid)
use_gpu = torch.cuda.is_available()
opt.use_gpu = use_gpu
# set gpu ids
if len(gpu_ids) > 0:
torch.cuda.set_device(gpu_ids[0])
# cudnn.benchmark = True
def train_model(model, loss_func, opt, dataloaders, dataset_sizes):
use_gpu = opt.use_gpu
num_epochs = opt.train_config["num_epochs"]
output_dir = os.path.join("checkpoints", opt.name, "output")
os.makedirs(output_dir, exist_ok=True)
cur_time = datetime.datetime.now()
logger_file = os.path.join(output_dir, "train_{}.log".format(cur_time))
logger = get_logger(logger_file)
# init tensorboard writer
tensorboard_writer = TensorBoardManager(
os.path.join(output_dir, "summary"))
macs, params = calc_flops_params(
model, (1, 3, opt.data_config['UAVhw'][0], opt.data_config['UAVhw'][1]), (1, 3, opt.data_config['Satellitehw'][0], opt.data_config['Satellitehw'][1]))
logger.info("MACs={}, Params={}".format(macs, params))
since = time.time()
scaler = GradScaler()
best_RDS = 0
logger.info('start training!')
optimizer, scheduler = make_optimizer(model, opt)
for epoch in range(num_epochs):
logger.info('Epoch {}/{}'.format(epoch+1, num_epochs))
logger.info('-' * 50)
# Each epoch has a training and validation phase
model.train() # Set model to training mode
running_loss = 0.0
iter_cls_loss = 0.0
iter_loc_loss = 0.0
iter_start = time.time()
iter_loss = 0
total_iters = len(dataloaders["train"])
# train
for iter, (z, x, ratex, ratey) in enumerate(dataloaders["train"]):
now_batch_size, _, _, _ = z.shape
if now_batch_size < opt.data_config["batchsize"]: # skip the last batch
continue
if use_gpu:
z = Variable(z.cuda().detach())
x = Variable(x.cuda().detach())
else:
z, x = Variable(z), Variable(x)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# start_time = time.time()
# if opt.train_config["autocast"]:
# with autocast():
# outputs = model(z, x) # satellite and drone
# else:
outputs = model(z, x)
# print("model_time:{}".format(time.time()-start_time))
cls_loss, loc_loss = loss_func(outputs, [ratex, ratey])
loss = cls_loss + loc_loss
# backward + optimize only if in training phase
loss_backward = loss
# start_time = time.time()
if opt.train_config["autocast"]:
scaler.scale(loss_backward).backward()
scaler.step(optimizer)
scaler.update()
scheduler.step()
else:
loss_backward.backward()
optimizer.step()
scheduler.step()
# print("loss_backward_time:{}".format(time.time()-start_time))
# statistics
running_loss += loss.item() * now_batch_size
iter_loss += loss.item() * now_batch_size
iter_cls_loss += cls_loss.item() * now_batch_size
iter_loc_loss += loc_loss.item() * now_batch_size
if (iter + 1) % opt.log_interval == 0:
time_elapsed_part = time.time() - iter_start
iter_loss = iter_loss/opt.log_interval/now_batch_size
iter_cls_loss = iter_cls_loss/opt.log_interval/now_batch_size
iter_loc_loss = iter_loc_loss/opt.log_interval/now_batch_size
lr_backbone = optimizer.state_dict()['param_groups'][0]['lr']
tensorboard_writer.add_scalar(
"loss/total_loss", iter_loss, epoch*total_iters+iter)
tensorboard_writer.add_scalar(
"loss/cls_loss", iter_cls_loss, epoch*total_iters+iter)
tensorboard_writer.add_scalar(
"loss/loc_loss", iter_loc_loss, epoch*total_iters+iter)
tensorboard_writer.add_scalar(
"lr", lr_backbone, epoch*total_iters+iter)
logger.info("[{}/{}] loss: {:.4f} cls_loss: {:.4f} loc_loss:{:.4f} lr_backbone:{:.6f} time:{:.0f}m {:.0f}s ".format(
iter + 1, total_iters, iter_loss, iter_cls_loss, iter_loc_loss, lr_backbone, time_elapsed_part // 60, time_elapsed_part % 60))
iter_loss = 0.0
iter_loc_loss = 0.0
iter_cls_loss = 0.0
iter_start = time.time()
epoch_loss = running_loss / dataset_sizes['satellite']
lr_backbone = optimizer.state_dict()['param_groups'][0]['lr']
time_elapsed = time.time() - since
logger.info('Epoch[{}/{}] Loss: {:.4f} lr_backbone:{:.6f} time:{:.0f}m {:.0f}s'.format(
epoch+1, num_epochs, epoch_loss, lr_backbone, time_elapsed // 60, time_elapsed % 60))
# ----------------------save and test the model------------------------------ #
if ((epoch + 1)-opt.checkpoint_config["epoch_start_save"]) % opt.checkpoint_config["interval"] == 0 and (epoch+1) >= opt.checkpoint_config["epoch_start_save"] or (epoch+1 == opt.train_config["num_epochs"]):
# if "only_save_best" is False, save the checkpoint
if not opt.checkpoint_config["only_save_best"]:
save_name = "last" if epoch+1 == opt.train_config["num_epochs"] else epoch+1
save_network(model, opt.name, save_name)
model.eval()
total_score = 0.0
total_score_b = 0.0
start_time = time.time()
flag_bias = 0
MA_json_save = []
MA_dict = defaultdict(int)
MA_log_list = [1, 3, 5, 10, 20, 30, 50, 100]
tensorboard_image_ind = 0
val_loss = 0.0
sample_nums = 0
for uav, satellite, X, Y, uav_path, satellite_path in tqdm(dataloaders["val"]):
sample_nums += uav.shape[0]
z = uav.cuda()
x = satellite.cuda()
rate_x = X/opt.data_config["Satellitehw"][0]
rate_y = Y/opt.data_config["Satellitehw"][1]
with torch.no_grad():
response, loc_bias = model(z, x)
cls_loss, loc_loss = loss_func([response, loc_bias], [rate_x, rate_y])
val_iter_loss = cls_loss + loc_loss
val_loss += val_iter_loss/len(dataloaders["val"])
if opt.model["loss"]["cls_loss"].get("use_softmax", False):
response = torch.softmax(response,dim=1)[:,1:]
else:
response = torch.sigmoid(response)
maps = response.squeeze().cpu().detach().numpy()
# 遍历每一个batch
for ind, map in enumerate(maps):
if opt.test_config["filterR"] != 1:
kernel = create_hanning_mask(opt.test_config["filterR"])
map = cv2.filter2D(map, -1, kernel)
label_XY = np.array(
[X[ind].squeeze().detach().numpy(), Y[ind].squeeze().detach().numpy()])
satellite_map = cv2.resize(map, opt.data_config["Satellitehw"])
id = np.argmax(satellite_map)
S_X = int(id // opt.data_config["Satellitehw"][0])
S_Y = int(id % opt.data_config["Satellitehw"][1])
# 获取预测的经纬度信息
get_gps_x = S_X / opt.data_config["Satellitehw"][0]
get_gps_y = S_Y / opt.data_config["Satellitehw"][0]
path = satellite_path[ind].split("/")
read_gps = json.load(
open(
os.path.join(
satellite_path[ind].split("/Satellite")[0],
"GPS_info.json"),
'r', encoding="utf-8"))
tl_E = read_gps["Satellite"][path[-1]]["tl_E"]
tl_N = read_gps["Satellite"][path[-1]]["tl_N"]
br_E = read_gps["Satellite"][path[-1]]["br_E"]
br_N = read_gps["Satellite"][path[-1]]["br_N"]
UAV_GPS_E = read_gps["UAV"]["E"]
UAV_GPS_N = read_gps["UAV"]["N"]
PRE_GPS_E = tl_E + (br_E - tl_E) * get_gps_y # 经度
PRE_GPS_N = tl_N - (tl_N - br_N) * get_gps_x # 纬度
# 统计MA指标
meter_distance = Distance(
UAV_GPS_N, UAV_GPS_E, PRE_GPS_N, PRE_GPS_E)
MA_json_save.append(meter_distance)
for meter in MA_log_list:
if meter_distance <= meter:
MA_dict[meter] += 1
# 统计RDS指标
pred_XY = np.array([S_X, S_Y])
single_score = evaluate(
opt, pred_XY=pred_XY, label_XY=label_XY)
total_score += single_score
if loc_bias is not None:
flag_bias = 1
loc = loc_bias.squeeze().cpu().detach().numpy()
id_map = np.argmax(map)
S_X_map = int(id_map // map.shape[-1])
S_Y_map = int(id_map % map.shape[-1])
pred_XY_map = np.array([S_X_map, S_Y_map])
pred_XY_b = (
pred_XY_map + loc[:, S_X_map, S_Y_map]) * opt.data_config["Satellitehw"][0] / loc.shape[-1] # add bias
pred_XY_b = np.array(pred_XY_b)
single_score_b = evaluate(
opt, pred_XY=pred_XY_b, label_XY=label_XY)
total_score_b += single_score_b
# print("pred: " + str(pred_XY) + " label: " +str(label_XY) +" score:{}".format(single_score))
# TODO:将可视化图像添加到tensorboard中
# time
time_consume = time.time() - start_time
logger.info("time consume is {}".format(time_consume))
# total loss
logger.info("valset total loss is {}".format(val_loss))
# RDS
RDS = total_score / sample_nums
# save the best checkpoint
if RDS > best_RDS:
best_RDS = RDS
best_epoch = epoch+1
save_network(model, opt.name, "best")
logger.info("Epoch{}: the RDS is {}".format(epoch+1, RDS))
if flag_bias:
RDS_b = total_score_b / sample_nums
logger.info(
"Epoch{}: the bias RDS is {}".format(epoch+1, RDS_b))
# MA@K
for log_meter in MA_log_list:
logger.info("MA@{}m = {:.4f}".format(log_meter,
MA_dict[log_meter]/sample_nums))
else:
val_loss = 0
for uav, satellite, X, Y, uav_path, satellite_path in tqdm(dataloaders["val_sub"]):
z = uav.cuda()
x = satellite.cuda()
rate_x = X/opt.data_config["Satellitehw"][0]
rate_y = Y/opt.data_config["Satellitehw"][1]
with torch.no_grad():
response, loc_bias = model(z, x)
cls_loss, loc_loss = loss_func([response, loc_bias], [rate_x, rate_y])
val_iter_loss = cls_loss + loc_loss
val_loss += val_iter_loss/len(dataloaders["val_sub"])
# total loss
logger.info("valset total loss is {}".format(val_loss))
logger.info("saved best epoch is {}, RDS is {:.3f}".format(best_epoch, best_RDS))
if __name__ == '__main__':
opt = get_config()
# init device
setup_device(opt)
# init seed
setup_seed(opt.seed)
# init dataloader
dataloaders_train, dataset_sizes = make_dataset(opt)
dataloaders_val, dataloaders_val_sub = make_dataset(opt, train=False)
dataloaders = {"train": dataloaders_train,
"val": dataloaders_val,
"val_sub": dataloaders_val_sub}
opt.train_iters_per_epoch = len(dataloaders["train"])
# init model
model = make_model(opt)
model = model.cuda()
# init loss
loss_func = make_loss(opt)
# copy current demos to a seperate dir
copyfiles2checkpoints(opt)
# train the model
train_model(model, loss_func, opt, dataloaders, dataset_sizes)