-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstate_predictor_training,py
142 lines (111 loc) · 5.45 KB
/
state_predictor_training,py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import typing as tp
from pathlib import Path
import random
import yaml
import numpy as np
from rlgym.envs import Match
from rlgym.utils.reward_functions import DefaultReward
from rlgym.utils.terminal_conditions.common_conditions import TimeoutCondition, GoalScoredCondition
from rlgym_tools.sb3_utils import SB3MultipleInstanceEnv
from ppocket_rocket.game_data import ModelDataProvider
from ppocket_rocket.training import StatePredictorTrainer, ReplayBuffer, StatePredictorEpisodeDataRecorder
from ppocket_rocket.training import GymActionParser
from ppocket_rocket.training import RandomBallGameState
from Nexto.ext_nexto_obs_builder import ExtNextoObsBuilder, ExtNextoObsData
from Nexto.agent import Agent as NextoAgent
from ppocket_rocket.training.state_setter import NectoStateSetter
def fix_data(data) -> tp.List[ExtNextoObsData]:
"""
This is a workaround to fix the bug inside sb3. Just reformat output data.
"""
if isinstance(data, ExtNextoObsData):
return [data]
out = []
for d in data:
if isinstance(d, ExtNextoObsData):
out.append(d)
continue
if len(d) == 0:
continue
assert isinstance(d, list)
for e in d:
assert isinstance(e, ExtNextoObsData)
out.append(e)
return out
def state_predictor_training(num_instances: int):
cfg = yaml.safe_load(open(Path('ppocket_rocket') / 'cfg.yaml', 'r'))
training_cfg = dict(cfg['state_predictor_training'])
train_min_data_size = int(training_cfg['train_size']['min'])
val_min_data_size = int(training_cfg['val_size']['min'])
agent = NextoAgent(result_as_index=True)
model_data_provider = ModelDataProvider()
action_parser = GymActionParser(model_data_provider)
obs_builder = ExtNextoObsBuilder(model_data_provider, use_mirror=True)
train_replay_buffer = ReplayBuffer()
val_replay_buffer = ReplayBuffer()
trainer = StatePredictorTrainer(cfg, train_replay_buffer, val_replay_buffer)
num_cars = 2
ep_data_recorders = [StatePredictorEpisodeDataRecorder(train_replay_buffer, int(training_cfg['train_size']['max']),
val_replay_buffer, int(training_cfg['val_size']['max']))
for _ in range(num_cars * num_instances * 2)]
def get_match():
return Match(
reward_function=DefaultReward(),
terminal_conditions=[TimeoutCondition(300 * 10), GoalScoredCondition()],
obs_builder=obs_builder,
# state_setter=RandomBallGameState(),
state_setter=NectoStateSetter(),
action_parser=action_parser,
game_speed=100, tick_skip=12, spawn_opponents=True, team_size=1
)
env = SB3MultipleInstanceEnv(match_func_or_matches=get_match,
num_instances=num_instances, wait_time=20)
ep_counter = 0
default_action_index = model_data_provider.default_action_index
train_freq = int(training_cfg['train_freq'])
eps_greedy = float(training_cfg['eps_greedy'])
data_counter = 0
while True:
nexto_betas = [random.uniform(0.3, 1.0) for _ in range(num_cars * num_instances)]
obs = env.reset()
obs = fix_data(obs)
done = np.array([False for _ in range(num_cars * num_instances)], dtype=bool)
while not done.all():
actions = []
for car_obs, car_done, nexto_beta in zip(obs, done, nexto_betas):
if car_done:
action = default_action_index
elif np.random.uniform(0, 1) < eps_greedy:
action = np.random.randint(0, model_data_provider.num_actions - 1)
else:
action = agent.act(car_obs.nexto_obs, nexto_beta)
actions.append(action)
env.step_async(actions)
next_obs, rewards, next_done, gameinfo = env.step_wait()
next_obs = fix_data(next_obs)
for car_idx in range(num_instances * num_cars):
if done[car_idx]:
continue
original_obs = obs[car_idx].gym_obs[0, ...]
mirrored_obs = obs[car_idx].gym_obs[1, ...]
m_recorder_idx = car_idx * 2
ep_data_recorders[m_recorder_idx].record(original_obs, actions[car_idx],
None, next_done[car_idx])
ep_data_recorders[m_recorder_idx + 1].record(mirrored_obs, actions[car_idx],
None, next_done[car_idx])
data_counter += 2
obs = next_obs
done = np.logical_or(done, next_done)
ep_counter += 1
print(f'Episode: {ep_counter} | Train RP size: {len(train_replay_buffer)} | '\
f'Val RP size: {len(val_replay_buffer)}')
if len(train_replay_buffer) >= train_min_data_size and len(val_replay_buffer) >= val_min_data_size:
if data_counter >= train_freq:
data_counter = data_counter % train_freq
trainer.train_epoch()
if __name__ == '__main__':
from argparse import ArgumentParser
args_parser = ArgumentParser()
args_parser.add_argument('-n', '--num_instances', type=int, default=1)
args = args_parser.parse_args()
state_predictor_training(args.num_instances)