-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathmlp.py
85 lines (69 loc) · 2.66 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable
from optim import AMSGrad
# Hyper Parameters
input_size = 784
hidden_size = 500
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001
# MNIST Dataset
train_dataset = dsets.MNIST(root='../data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = dsets.MNIST(root='../data',
train=False,
transform=transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
# Neural Network Model (1 hidden layer)
class Net(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(Net, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
net = Net(input_size, hidden_size, num_classes)
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = AMSGrad(net.parameters(), lr=learning_rate, weight_decay=0.01)
# Train the Model
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Convert torch tensor to Variable
images = Variable(images.view(-1, 28*28))
labels = Variable(labels)
# Forward + Backward + Optimize
optimizer.zero_grad() # zero the gradient buffer
outputs = net(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [%d/%d], Step [%d/%d], Loss: %.4f'
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))
# Test the Model
correct = 0
total = 0
for images, labels in test_loader:
images = Variable(images.view(-1, 28*28))
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the network on the 10000 test images: %.2f %%' % (100. * correct / total))