-
Notifications
You must be signed in to change notification settings - Fork 16
/
sedinet_infer.py
612 lines (546 loc) · 26.4 KB
/
sedinet_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
## Written by Daniel Buscombe,
## MARDA Science
##> Release v1.3 (July 2020)
from sedinet_models import *
###===================================================
def run_training_siso_simo(vars, train_csvfile, test_csvfile, name, res_folder,
mode, greyscale, dropout, numclass, scale):
"""
This function generates, trains and evaluates a sedinet model for
continuous prediction
"""
if numclass>0:
ID_MAP = dict(zip(np.arange(numclass), [str(k) for k in range(numclass)]))
##======================================
## this randomly selects imagery for training and testing imagery sets
## while also making sure that both training and tetsing sets have
## at least 3 examples of each category
train_idx, train_df = get_df(train_csvfile)
test_idx, test_df = get_df(test_csvfile)
##==============================================
## create a sedinet model to estimate category
if numclass>0:
SM = make_cat_sedinet(ID_MAP, dropout, greyscale)
else:
SM = make_sedinet_siso_simo(vars, greyscale, dropout)
if scale==True:
CS = []
for var in vars:
cs = RobustScaler() ##alternative = MinMaxScaler()
cs.fit_transform(
np.r_[train_df[var].values, test_df[var].values].reshape(-1,1)
)
CS.append(cs)
del cs
else:
CS = []
##==============================================
## train model
if numclass==0:
if type(BATCH_SIZE)==list:
SMs = []; weights_path = []
for batch_size, valid_batch_size in zip(BATCH_SIZE, VALID_BATCH_SIZE):
sm, wp = train_sedinet_siso_simo(SM, train_df, test_df,
train_idx, test_idx, name,
vars, mode, greyscale, CS,
dropout, batch_size, valid_batch_size,
res_folder, scale)
SMs.append(sm)
weights_path.append(wp)
gc.collect()
else:
SM, weights_path = train_sedinet_siso_simo(SM, train_df, test_df,
train_idx, test_idx, name,
vars, mode, greyscale, CS,
dropout, BATCH_SIZE, VALID_BATCH_SIZE,
res_folder, scale)
else:
if type(BATCH_SIZE)==list:
SMs = []; weights_path = []
for batch_size, valid_batch_size in zip(BATCH_SIZE, VALID_BATCH_SIZE):
sm, wp = train_sedinet_cat(SM, train_df, test_df, train_idx,
test_idx, ID_MAP, vars, greyscale, name, mode,
batch_size, valid_batch_size, res_folder)
SMs.append(sm)
weights_path.append(wp)
gc.collect()
else:
SM, weights_path = train_sedinet_cat(SM, train_df, test_df, train_idx,
test_idx, ID_MAP, vars, greyscale, name, mode,
BATCH_SIZE, VALID_BATCH_SIZE, res_folder)
classes = np.arange(len(ID_MAP))
K.clear_session()
# classes = [i for i in ID_MAP.keys()]
# SM = SMs
# var = vars[0]
##==============================================
# test model
if numclass==0:
if type(BATCH_SIZE)==list:
predict_test_train_siso_simo(train_df, test_df, train_idx, test_idx, vars,
SMs, weights_path, name, mode, greyscale, CS,
dropout, scale, DO_AUG)
else:
predict_test_train_siso_simo(train_df, test_df, train_idx, test_idx, vars,
SM, weights_path, name, mode, greyscale, CS,
dropout, scale, DO_AUG)
else:
if type(BATCH_SIZE)==list:
predict_test_train_cat(train_df, test_df, train_idx, test_idx, vars[0],
SMs, [i for i in ID_MAP.keys()], weights_path, greyscale,
name, DO_AUG)
else:
predict_test_train_cat(train_df, test_df, train_idx, test_idx, vars[0],
SM, [i for i in ID_MAP.keys()], weights_path, greyscale,
name, DO_AUG)
K.clear_session()
##===================================
## move model files and plots to the results folder
tidy(name, res_folder)
# df = train_df
# indices=train_idx[:10]
# for_training=True
###==================================
def train_sedinet_cat(SM, train_df, test_df, train_idx, test_idx,
ID_MAP, vars, greyscale, name, mode, batch_size, valid_batch_size,
res_folder):
"""
This function trains an implementation of SediNet
"""
##================================
## create training and testing file generators, set the weights path,
## plot the model, and create a callback list for model training
train_gen = get_data_generator_1image(train_df, train_idx, True, ID_MAP,
vars[0], batch_size, greyscale, DO_AUG) ##BATCH_SIZE
valid_gen = get_data_generator_1image(test_df, test_idx, True, ID_MAP,
vars[0], valid_batch_size, greyscale, False) ##VALID_BATCH_SIZE
if SHALLOW is True:
if DO_AUG is True:
weights_path = name+"_"+mode+"_batch"+str(batch_size)+"_im"+str(IM_HEIGHT)+\
"_"+str(IM_WIDTH)+"_shallow_"+vars[0]+"_"+CAT_LOSS+"_aug.hdf5"
else:
weights_path = name+"_"+mode+"_batch"+str(batch_size)+"_im"+str(IM_HEIGHT)+\
"_"+str(IM_WIDTH)+"_shallow_"+vars[0]+"_"+CAT_LOSS+"_noaug.hdf5"
else:
if DO_AUG is True:
weights_path = name+"_"+mode+"_batch"+str(batch_size)+"_im"+str(IM_HEIGHT)+\
"_"+str(IM_WIDTH)+"_"+vars[0]+"_"+CAT_LOSS+"_aug.hdf5"
else:
weights_path = name+"_"+mode+"_batch"+str(batch_size)+"_im"+str(IM_HEIGHT)+\
"_"+str(IM_WIDTH)+"_"+vars[0]+"_"+CAT_LOSS+"_noaug.hdf5"
if os.path.exists(weights_path):
SM.load_weights(weights_path)
print("==========================================")
print("Loading weights that already exist: %s" % (weights_path) )
print("Skipping model training")
elif os.path.exists(res_folder+os.sep+weights_path):
weights_path = res_folder+os.sep+weights_path
SM.load_weights(weights_path)
print("==========================================")
print("Loading weights that already exist: %s" % (weights_path) )
print("Skipping model training")
else:
try:
plot_model(SM, weights_path.replace('.hdf5', '_model.png'),
show_shapes=True, show_layer_names=True)
except:
pass
callbacks_list = [
ModelCheckpoint(weights_path, monitor='val_loss', verbose=1,
save_best_only=True, mode='min',
save_weights_only = True)
]
print("=========================================")
print("[INFORMATION] schematic of the model has been written out to: "+\
weights_path.replace('.hdf5', '_model.png'))
print("[INFORMATION] weights will be written out to: "+weights_path)
##==============================================
## set checkpoint file and parameters that control early stopping,
## and reduction of learning rate if and when validation
## scores plateau upon successive epochs
# reduceloss_plat = ReduceLROnPlateau(monitor='val_loss', factor=FACTOR,
# patience=STOP_PATIENCE, verbose=1, mode='auto', min_delta=MIN_DELTA,
# cooldown=STOP_PATIENCE, min_lr=MIN_LR)
#
# earlystop = EarlyStopping(monitor="val_loss", mode="min", patience=STOP_PATIENCE)
model_checkpoint = ModelCheckpoint(weights_path, monitor='val_loss',
verbose=1, save_best_only=True, mode='min',
save_weights_only = True)
#tqdm_callback = tfa.callbacks.TQDMProgressBar()
# callbacks_list = [model_checkpoint, reduceloss_plat, earlystop] #, tqdm_callback]
##==============================================
## train the model
# history = SM.fit(train_gen,
# steps_per_epoch=len(train_idx)//batch_size, ##BATCH_SIZE
# epochs=NUM_EPOCHS,
# callbacks=callbacks_list,
# validation_data=valid_gen, #use_multiprocessing=True,
# validation_steps=len(test_idx)//valid_batch_size) #max_queue_size=10 ##VALID_BATCH_SIZE
## with non-adaptive exponentially decreasing learning rate
exponential_decay_fn = exponential_decay(MAX_LR, NUM_EPOCHS)
lr_scheduler = LearningRateScheduler(exponential_decay_fn)
callbacks_list = [model_checkpoint, lr_scheduler]
## train the model
history = SM.fit(train_gen,
steps_per_epoch=len(train_idx)//batch_size, ##BATCH_SIZE
epochs=NUM_EPOCHS,
callbacks=callbacks_list,
validation_data=valid_gen, #use_multiprocessing=True,
validation_steps=len(test_idx)//valid_batch_size) #max_queue_size=10 ##VALID_BATCH_SIZE
###===================================================
## Plot the loss and accuracy as a function of epoch
plot_train_history_1var(history)
# plt.savefig(vars+'_'+str(IM_HEIGHT)+'_batch'+str(batch_size)+'_history.png', ##BATCH_SIZE
# dpi=300, bbox_inches='tight')
plt.savefig(weights_path.replace('.hdf5','_history.png'),dpi=300, bbox_inches='tight')
plt.close('all')
# serialize model to JSON to use later to predict
model_json = SM.to_json()
with open(weights_path.replace('.hdf5','.json'), "w") as json_file:
json_file.write(model_json)
return SM, weights_path
###===================================================
def train_sedinet_siso_simo(SM, train_df, test_df, train_idx, test_idx, name,
vars, mode, greyscale, CS, dropout, batch_size, valid_batch_size,
res_folder, scale):
"""
This function trains an implementation of sedinet
"""
##==============================================
## create training and testing file generators, set the weights path,
## plot the model, and create a callback list for model training
train_gen = get_data_generator_Nvars_siso_simo(train_df, train_idx, True,
vars, batch_size, greyscale, CS, DO_AUG)
valid_gen = get_data_generator_Nvars_siso_simo(test_df, test_idx, True,
vars, valid_batch_size, greyscale, CS, False) ##only augment training
# get a string saying how many variables, fr the output files
varstring = str(len(vars))+'vars' #''.join([str(k)+'_' for k in vars])
# mae the appropriate weights file
if SHALLOW is True:
if DO_AUG is True:
if scale is True:
weights_path = name+"_"+mode+"_batch"+str(batch_size)+"_im"+str(IM_HEIGHT)+\
"_"+str(IM_WIDTH)+"_shallow_"+varstring+"_"+CONT_LOSS+"_aug_scale.hdf5"
else:
weights_path = name+"_"+mode+"_batch"+str(batch_size)+"_im"+str(IM_HEIGHT)+\
"_"+str(IM_WIDTH)+"_shallow_"+varstring+"_"+CONT_LOSS+"_aug.hdf5"
else:
if scale is True:
weights_path = name+"_"+mode+"_batch"+str(batch_size)+"_im"+str(IM_HEIGHT)+\
"_"+str(IM_WIDTH)+"_shallow_"+varstring+"_"+CONT_LOSS+"_noaug_scale.hdf5"
else:
weights_path = name+"_"+mode+"_batch"+str(batch_size)+"_im"+str(IM_HEIGHT)+\
"_"+str(IM_WIDTH)+"_shallow_"+varstring+"_"+CONT_LOSS+"_noaug.hdf5"
else:
if DO_AUG is True:
if scale is True:
weights_path = name+"_"+mode+"_batch"+str(batch_size)+"_im"+str(IM_HEIGHT)+\
"_"+str(IM_WIDTH)+"_"+varstring+"_"+CONT_LOSS+"_aug_scale.hdf5"
else:
weights_path = name+"_"+mode+"_batch"+str(batch_size)+"_im"+str(IM_HEIGHT)+\
"_"+str(IM_WIDTH)+"_"+varstring+"_"+CONT_LOSS+"_aug.hdf5"
else:
if scale is True:
weights_path = name+"_"+mode+"_batch"+str(batch_size)+"_im"+str(IM_HEIGHT)+\
"_"+str(IM_WIDTH)+"_"+varstring+"_"+CONT_LOSS+"_noaug_scale.hdf5"
else:
weights_path = name+"_"+mode+"_batch"+str(batch_size)+"_im"+str(IM_HEIGHT)+\
"_"+str(IM_WIDTH)+"_"+varstring+"_"+CONT_LOSS+"_noaug.hdf5"
# if it already exists, skip training
if os.path.exists(weights_path):
SM.load_weights(weights_path)
print("==========================================")
print("Loading weights that already exist: %s" % (weights_path) )
print("Skipping model training")
# if it already exists in res_folder, skip training
elif os.path.exists(res_folder+os.sep+weights_path):
weights_path = res_folder+os.sep+weights_path
SM.load_weights(weights_path)
print("==========================================")
print("Loading weights that already exist: %s" % (weights_path) )
print("Skipping model training")
else: #train
# if scaler=true (CS=[]), dump out scalers to pickle file
if len(CS)==0:
pass
else:
joblib.dump(CS, weights_path.replace('.hdf5','_scaler.pkl'))
try: # plot the model if pydot/graphviz installed
plot_model(SM, weights_path.replace('.hdf5', '_model.png'),
show_shapes=True, show_layer_names=True)
print("[INFORMATION] model schematic written to: "+\
weights_path.replace('.hdf5', '_model.png'))
except:
pass
print("==========================================")
print("[INFORMATION] weights will be written out to: "+weights_path)
##==============================================
## set checkpoint file and parameters that control early stopping,
## and reduction of learning rate if and when validation scores plateau upon successive epochs
# reduceloss_plat = ReduceLROnPlateau(monitor='val_loss', factor=FACTOR,
# patience=STOP_PATIENCE, verbose=1, mode='auto',
# min_delta=MIN_DELTA, cooldown=5,
# min_lr=MIN_LR)
#
# earlystop = EarlyStopping(monitor="val_loss", mode="min",
# patience=STOP_PATIENCE)
# set model checkpoint. only save best weights, based on min validation loss
model_checkpoint = ModelCheckpoint(weights_path, monitor='val_loss', verbose=1,
save_best_only=True, mode='min',
save_weights_only = True)
#tqdm_callback = tfa.callbacks.TQDMProgressBar()
# callbacks_list = [model_checkpoint, reduceloss_plat, earlystop] #, tqdm_callback]
try: #write summary of the model to txt file
with open(weights_path.replace('.hdf5','') + '_report.txt','w') as fh:
# Pass the file handle in as a lambda function to make it callable
SM.summary(print_fn=lambda x: fh.write(x + '\n'))
fh.close()
print("[INFORMATION] model summary written to: "+ \
weights_path.replace('.hdf5','') + '_report.txt')
with open(weights_path.replace('.hdf5','') + '_report.txt','r') as fh:
tmp = fh.readlines()
print("===============================================")
print("Total parameters: %s" %\
(''.join(tmp).split('Total params:')[-1].split('\n')[0]))
fh.close()
print("===============================================")
except:
pass
##==============================================
## train the model
# history = SM.fit(train_gen,
# steps_per_epoch=len(train_idx)//batch_size, ##BATCH_SIZE
# epochs=NUM_EPOCHS,
# callbacks=callbacks_list,
# validation_data=valid_gen,
# validation_steps=len(test_idx)//valid_batch_size) ##VALID_BATCH_SIZE
# #use_multiprocessing=True
## non-adaptive exponentially decreasing learning rate
exponential_decay_fn = exponential_decay(MAX_LR, NUM_EPOCHS)
lr_scheduler = LearningRateScheduler(exponential_decay_fn)
callbacks_list = [model_checkpoint, lr_scheduler]
## train the model
history = SM.fit(train_gen,
steps_per_epoch=len(train_idx)//batch_size, ##BATCH_SIZE
epochs=NUM_EPOCHS,
callbacks=callbacks_list,
validation_data=valid_gen, #use_multiprocessing=True,
validation_steps=len(test_idx)//valid_batch_size) #max_queue_size=10 ##VALID_BATCH_SIZE
###===================================================
## Plot the loss and accuracy as a function of epoch
if len(vars)==1:
plot_train_history_1var_mae(history)
else:
plot_train_history_Nvar(history, vars, len(vars))
varstring = ''.join([str(k)+'_' for k in vars])
plt.savefig(weights_path.replace('.hdf5', '_history.png'), dpi=300,
bbox_inches='tight')
plt.close('all')
# serialize model to JSON to use later to predict
model_json = SM.to_json()
with open(weights_path.replace('.hdf5','.json'), "w") as json_file:
json_file.write(model_json)
return SM, weights_path
#
# ###===================================================
# def run_training_miso_mimo(vars, train_csvfile, test_csvfile, name, res_folder,
# mode, greyscale, auxin, dropout):
# """
# This function generates, trains and evaluates a sedinet model for
# continuous prediction
# """
# ##======================================
# ## this randomly selects imagery for training and testing imagery sets
# ## while also making sure that both training and tetsing sets
# ## have at least 3 examples of each category
# train_idx, train_df = get_df(train_csvfile)
# test_idx, test_df = get_df(test_csvfile)
#
# ##==============================================
# ## create a sedinet model to estimate category
# cnn = make_sedinet_miso_mimo(False, dropout)
#
# CS = []
# for var in vars:
# cs = RobustScaler() #MinMaxScaler()
# cs.fit_transform(
# np.r_[train_df[var].values, test_df[var].values].reshape(-1,1)
# )
# CS.append(cs)
# del cs
#
# CSaux = []
# cs = RobustScaler() #MinMaxScaler()
# cs.fit_transform(
# np.r_[train_df[auxin].values, test_df[auxin].values].reshape(-1,1)
# )
# CSaux.append(cs)
# del cs
#
# ##==============================================
# ## train model
# if type(BATCH_SIZE)==list:
# # SM, weights_path = train_sedinet_miso_mimo(cnn, train_df, test_df,
# # train_idx, test_idx, name, vars,
# # auxin, mode, greyscale,
# # CS, CSaux)
# SMs = []; weights_path = []
# for batch_size, valid_batch_size in zip(BATCH_SIZE, VALID_BATCH_SIZE):
# sm, wp = train_sedinet_miso_mimo(cnn, train_df, test_df,
# train_idx, test_idx, name,
# vars, auxin, mode, greyscale, CS, CSaux,
# batch_size, valid_batch_size)
# SMs.append(sm)
# weights_path.append(wp)
# else:
# SM, weights_path = train_sedinet_miso_mimo(cnn, train_df, test_df,
# train_idx, test_idx, name, vars,
# auxin, mode, greyscale,
# CS, CSaux)
#
# if type(BATCH_SIZE)==list:
# # test model
# predict_test_train_miso_mimo(train_df, test_df, train_idx, test_idx, vars,
# auxin, SMs, weights_path, name, mode,
# greyscale, CS, CSaux)
#
# else:
# predict_test_train_miso_mimo(train_df, test_df, train_idx, test_idx, vars,
# auxin, SM, weights_path, name, mode,
# greyscale, CS, CSaux)
#
# K.clear_session()
#
# ##==============================================
# ## move model files and plots to the results folder
# tidy(res_folder)#, name)
#
# ###===================================================
# def train_sedinet_miso_mimo(cnn, train_df, test_df, train_idx, test_idx,
# name, vars, auxin, mode, greyscale, CS, CSaux):
# """
# This function trains an implementation of sedinet
# """
#
# dense_neurons = 4
#
# ##==============================================
# ## create training and testing file generators,
# # set the weights path, plot the model, and create
# # a callback list for model training
# varstring = ''.join([str(k)+'_' for k in vars])
# weights_path = name+"_"+auxin+"_"+mode+"_batch"+str(BATCH_SIZE)+"_"+\
# varstring+"_checkpoint.hdf5"
#
# # Create the MLP and CNN models
# mlp = make_mlp(1) #dense_neurons
#
# # Create the input to the final set of layers as the output of both the MLP and CNN
# combinedInput = concatenate([mlp.output, cnn.output])
#
# # The final fully-connected layer head will have two dense layers
# # (one relu and one sigmoid)
# x = Dense(dense_neurons, activation="relu")(combinedInput)
# x = Dense(1, activation="sigmoid")(x)
#
# ## The final model accepts numerical data on the MLP input and
# ## images on the CNN input, outputting a single value
# outputs = []
# for var in vars:
# outputs.append(Dense(units=1, activation='linear', name=var+'_output')(x) )
#
# loss = dict(zip([k+"_output" for k in vars], ['mse' for k in vars]))
# metrics = dict(zip([k+"_output" for k in vars], ['mae' for k in vars]))
#
# # our final model will accept categorical/numerical data on the MLP
# # input and images on the CNN input
# SM = Model(inputs=[mlp.input, cnn.input], outputs=outputs)
#
# SM.compile(optimizer=OPT, loss=loss, metrics=metrics)
#
# try:
# plot_model(SM, weights_path.replace('.hdf5', '_model.png'),
# show_shapes=True, show_layer_names=True)
# print("[INFORMATION] model schematic written to: "+\
# weights_path.replace('.hdf5', '_model.png'))
# except:
# pass
#
# print("==========================================")
# print("[INFORMATION] weights will be written out to: "+weights_path)
#
#
# try:
# with open(weights_path.replace('.hdf5','') + '_report.txt','w') as fh:
# # Pass the file handle in as a lambda function to make it callable
# SM.summary(print_fn=lambda x: fh.write(x + '\n'))
# fh.close()
# print("[INFORMATION] model summary written to: "+\
# weights_path.replace('.hdf5','') + '_report.txt')
# with open(weights_path.replace('.hdf5','') + '_report.txt','r') as fh:
# tmp = fh.readlines()
# print("===============================================")
# print("Total parameters: %s" % (''.join(tmp).split('Total params:')[-1].split('\n')[0]))
# fh.close()
# print("===============================================")
# except:
# pass
#
#
# reduceloss_plat = ReduceLROnPlateau(monitor='val_loss', factor=FACTOR, patience=STOP_PATIENCE,
# verbose=1, mode='auto', min_delta=MIN_DELTA,
# cooldown=5, min_lr=MIN_LR)
#
# earlystop = EarlyStopping(monitor="val_loss", mode="auto",
# patience=STOP_PATIENCE)
#
# model_checkpoint = ModelCheckpoint(weights_path, monitor='val_loss',
# verbose=1,
# save_best_only=True, mode='min',
# save_weights_only = True)
#
#
# callbacks_list = [model_checkpoint, reduceloss_plat, earlystop]
#
# #aux_mean = train_df[auxin].mean()
# #aux_std = train_df[auxin].std()
#
# train_gen = get_data_generator_Nvars_miso_mimo(train_df, train_idx, True,
# vars, auxin, BATCH_SIZE,
# greyscale, CS, CSaux)
# valid_gen = get_data_generator_Nvars_miso_mimo(test_df, test_idx, True,
# vars, auxin, VALID_BATCH_SIZE,
# greyscale, CS, CSaux)
#
# ##==============================================
# ## train the model
# history = SM.fit(train_gen,
# steps_per_epoch=len(train_idx)//BATCH_SIZE,
# epochs=NUM_EPOCHS,
# callbacks=callbacks_list,
# validation_data=valid_gen,
# validation_steps=len(test_idx)//VALID_BATCH_SIZE)
# #use_multiprocessing=True,
#
# ###===================================================
# ## Plot the loss and accuracy as a function of epoch
# if len(vars)==1:
# plot_train_history_1var_mae(history)
# else:
# plot_train_history_Nvar(history, vars, len(vars))
#
# varstring = ''.join([str(k)+'_' for k in vars])
# plt.savefig(weights_path.replace('.hdf5', '_history.png'),
# dpi=300, bbox_inches='tight')
# plt.close('all')
#
# # serialize model to JSON to use later to predict
# model_json = SM.to_json()
# with open(weights_path.replace('.hdf5','.json'), "w") as json_file:
# json_file.write(model_json)
#
# ## do some garbage collection
# #gc.collect()
#
# return SM, weights_path