forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsgemm.cpp
1148 lines (1074 loc) · 39.6 KB
/
sgemm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*-
// vi: set et ft=c++ ts=4 sts=4 sw=4 fenc=utf-8 :vi
//
// Copyright 2024 Mozilla Foundation
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// _ _ ___ _ _ ___
// | |_(_)_ _ _ _| _ ) | /_\ / __|
// | _| | ' \ || | _ \ |__ / _ \\__ \.
// \__|_|_||_\_, |___/____/_/ \_\___/
// |__/
//
// BASIC LINEAR ALGEBRA SUBPROGRAMS
//
//
// This file implements multithreaded CPU matrix multiplication for the
// common contiguous use case C = Aᵀ * B. These kernels are designed to
// have excellent performance[1] for matrices that fit in the CPU cache
// without imposing any overhead such as cache filling or malloc calls.
//
// This implementation does not guarantee any upper bound with rounding
// errors, which grow along with k. Our goal's to maximally exploit the
// hardware for performance, and then use whatever resources remain for
// improving numerical accuracy.
//
// [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online].
// Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].
#pragma GCC diagnostic ignored "-Wpedantic"
#pragma GCC diagnostic ignored "-Wignored-attributes"
#include "sgemm.h"
#include "ggml-impl.h"
#include "ggml-quants.h"
#ifdef _MSC_VER
#define NOINLINE __declspec(noinline)
#else
#define NOINLINE __attribute__((__noinline__))
#endif
#if defined(__ARM_NEON) || defined(__AVX512F__)
#define VECTOR_REGISTERS 32
#else
#define VECTOR_REGISTERS 16
#endif
// there will be blocks
#define BEGIN_KERNEL(RM, RN) \
int ytiles = (m - m0) / RM; \
int xtiles = (n - n0) / RN; \
int tiles = ytiles * xtiles; \
int duty = (tiles + nth - 1) / nth; \
int start = duty * ith; \
int end = start + duty; \
if (end > tiles) \
end = tiles; \
for (int job = start; job < end; ++job) { \
int i = m0 + job / xtiles * RM; \
int j = n0 + job % xtiles * RN;
#define END_KERNEL() }
#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
namespace {
inline float unhalf(ggml_fp16_t d) {
return GGML_FP16_TO_FP32(d);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED ARITHMETIC OPERATIONS
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline __m128 add(__m128 x, __m128 y) { return _mm_add_ps(x, y); }
inline __m128 sub(__m128 x, __m128 y) { return _mm_sub_ps(x, y); }
inline __m128 mul(__m128 x, __m128 y) { return _mm_mul_ps(x, y); }
#endif // __SSE__
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline __m256 add(__m256 x, __m256 y) { return _mm256_add_ps(x, y); }
inline __m256 sub(__m256 x, __m256 y) { return _mm256_sub_ps(x, y); }
inline __m256 mul(__m256 x, __m256 y) { return _mm256_mul_ps(x, y); }
#endif // __AVX__
#if defined(__AVX512F__)
inline __m512 add(__m512 x, __m512 y) { return _mm512_add_ps(x, y); }
inline __m512 sub(__m512 x, __m512 y) { return _mm512_sub_ps(x, y); }
inline __m512 mul(__m512 x, __m512 y) { return _mm512_mul_ps(x, y); }
#endif // __AVX512F__
#if defined(__ARM_NEON)
inline float32x4_t add(float32x4_t x, float32x4_t y) { return vaddq_f32(x, y); }
inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vsubq_f32(x, y); }
inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vmulq_f32(x, y); }
#endif // __ARM_NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
inline float16x8_t add(float16x8_t x, float16x8_t y) { return vaddq_f16(x, y); }
inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); }
inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); }
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED HORIZONTAL SUM
#if defined(__ARM_NEON)
inline float hsum(float32x4_t x) {
return vaddvq_f32(x);
}
#endif // __ARM_NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
inline float hsum(float16x8_t x) {
return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)),
vcvt_f32_f16(vget_high_f16(x))));
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline float hsum(__m128 x) {
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
x = _mm_add_ps(x, _mm_movehl_ps(x, x));
x = _mm_add_ss(x, _mm_movehdup_ps(x));
#else
__m128 t;
t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1));
x = _mm_add_ps(x, t);
t = _mm_movehl_ps(t, x);
x = _mm_add_ss(x, t);
#endif
return _mm_cvtss_f32(x);
}
#endif
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline float hsum(__m256 x) {
return hsum(_mm_add_ps(_mm256_extractf128_ps(x, 1),
_mm256_castps256_ps128(x)));
}
#endif // __AVX__
#if defined(__AVX512F__)
inline float hsum(__m512 x) {
return _mm512_reduce_add_ps(x);
}
#endif // __AVX512F__
////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED MEMORY LOADING
template <typename T, typename U> T load(const U *);
#if defined(__ARM_NEON)
template <> inline float32x4_t load(const float *p) {
return vld1q_f32(p);
}
#if !defined(_MSC_VER)
template <> inline float16x8_t load(const ggml_fp16_t *p) {
return vld1q_f16((const float16_t *)p);
}
template <> inline float32x4_t load(const ggml_fp16_t *p) {
return vcvt_f32_f16(vld1_f16((const float16_t *)p));
}
#endif // _MSC_VER
#endif // __ARM_NEON
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
template <> inline __m128 load(const float *p) {
return _mm_loadu_ps(p);
}
#endif // __SSE__
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
template <> inline __m256 load(const float *p) {
return _mm256_loadu_ps(p);
}
#endif // __AVX__
#if defined(__F16C__)
template <> inline __m256 load(const ggml_fp16_t *p) {
return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p));
}
#endif // __F16C__
#if defined(__AVX512F__)
template <> inline __m512 load(const float *p) {
return _mm512_loadu_ps(p);
}
template <> inline __m512 load(const ggml_fp16_t *p) {
return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p));
}
#endif // __AVX512F__
////////////////////////////////////////////////////////////////////////////////////////////////////
// ABSTRACTIONS
/**
* Computes a * b + c.
*
* This operation will become fused into a single arithmetic instruction
* if the hardware has support for this feature, e.g. Intel Haswell+ (c.
* 2013), AMD Bulldozer+ (c. 2011), etc.
*/
template <typename T, typename U>
inline U madd(T a, T b, U c) {
return add(mul(a, b), c);
}
/**
* Computes a * b + c with error correction.
*
* @see W. Kahan, "Further remarks on reducing truncation errors,"
* Communications of the ACM, vol. 8, no. 1, p. 40, Jan. 1965,
* doi: 10.1145/363707.363723.
*/
template <typename T, typename U>
inline U madder(T a, T b, U c, U *e) {
U y = sub(mul(a, b), *e);
U t = add(c, y);
*e = sub(sub(t, c), y);
return t;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT MATRIX MULTIPLICATION
template <int KN, typename D, typename V, typename TA, typename TB, typename TC>
class tinyBLAS {
public:
tinyBLAS(int k,
const TA *A, int lda,
const TB *B, int ldb,
TC *C, int ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int m, int n, int task) {
if (task == GGML_TASK_TYPE_COMPUTE)
mnpack(0, m, 0, n);
}
private:
NOINLINE void mnpack(int m0, int m, int n0, int n) {
int mc, nc, mp, np;
if (m - m0 <= 0 || n - n0 <= 0)
return;
if (VECTOR_REGISTERS >= 32 && n - n0 >= 5 && m - m0 >= 5) {
mc = 5;
nc = 5;
gemm5x5(m0, m, n0, n);
} else if (n - n0 >= 4 && m - m0 >= 3) {
mc = 3;
nc = 4;
gemm3x4(m0, m, n0, n);
} else if (n - n0 >= 4) {
mc = 1;
nc = 4;
gemm1x4(m0, m, n0, n);
} else if (m - m0 >= 4) {
mc = 4;
nc = 1;
gemm4x1(m0, m, n0, n);
} else {
mc = 1;
nc = 1;
gemm1x1(m0, m, n0, n);
}
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, mp, np, n);
mnpack(mp, m, np, n);
}
NOINLINE void gemm5x5(int m0, int m, int n0, int n) {
BEGIN_KERNEL(5, 5)
D c00 = {0};
D c01 = {0};
D c02 = {0};
D c03 = {0};
D c04 = {0};
D c10 = {0};
D c11 = {0};
D c12 = {0};
D c13 = {0};
D c14 = {0};
D c20 = {0};
D c21 = {0};
D c22 = {0};
D c23 = {0};
D c24 = {0};
D c30 = {0};
D c31 = {0};
D c32 = {0};
D c33 = {0};
D c34 = {0};
D c40 = {0};
D c41 = {0};
D c42 = {0};
D c43 = {0};
D c44 = {0};
for (int l = 0; l < k; l += KN) {
V k0 = load<V>(B + ldb * (j + 0) + l);
V k1 = load<V>(B + ldb * (j + 1) + l);
V k2 = load<V>(B + ldb * (j + 2) + l);
V k3 = load<V>(B + ldb * (j + 3) + l);
V k4 = load<V>(B + ldb * (j + 4) + l);
V a0 = load<V>(A + lda * (i + 0) + l);
c00 = madd(a0, k0, c00);
c01 = madd(a0, k1, c01);
c02 = madd(a0, k2, c02);
c03 = madd(a0, k3, c03);
c04 = madd(a0, k4, c04);
V a1 = load<V>(A + lda * (i + 1) + l);
c10 = madd(a1, k0, c10);
c11 = madd(a1, k1, c11);
c12 = madd(a1, k2, c12);
c13 = madd(a1, k3, c13);
c14 = madd(a1, k4, c14);
V a2 = load<V>(A + lda * (i + 2) + l);
c20 = madd(a2, k0, c20);
c21 = madd(a2, k1, c21);
c22 = madd(a2, k2, c22);
c23 = madd(a2, k3, c23);
c24 = madd(a2, k4, c24);
V a3 = load<V>(A + lda * (i + 3) + l);
c30 = madd(a3, k0, c30);
c31 = madd(a3, k1, c31);
c32 = madd(a3, k2, c32);
c33 = madd(a3, k3, c33);
c34 = madd(a3, k4, c34);
V a4 = load<V>(A + lda * (i + 4) + l);
c40 = madd(a4, k0, c40);
c41 = madd(a4, k1, c41);
c42 = madd(a4, k2, c42);
c43 = madd(a4, k3, c43);
c44 = madd(a4, k4, c44);
}
C[ldc * (j + 0) + (i + 0)] = hsum(c00);
C[ldc * (j + 0) + (i + 1)] = hsum(c10);
C[ldc * (j + 0) + (i + 2)] = hsum(c20);
C[ldc * (j + 0) + (i + 3)] = hsum(c30);
C[ldc * (j + 0) + (i + 4)] = hsum(c40);
C[ldc * (j + 1) + (i + 0)] = hsum(c01);
C[ldc * (j + 1) + (i + 1)] = hsum(c11);
C[ldc * (j + 1) + (i + 2)] = hsum(c21);
C[ldc * (j + 1) + (i + 3)] = hsum(c31);
C[ldc * (j + 1) + (i + 4)] = hsum(c41);
C[ldc * (j + 2) + (i + 0)] = hsum(c02);
C[ldc * (j + 2) + (i + 1)] = hsum(c12);
C[ldc * (j + 2) + (i + 2)] = hsum(c22);
C[ldc * (j + 2) + (i + 3)] = hsum(c32);
C[ldc * (j + 2) + (i + 4)] = hsum(c42);
C[ldc * (j + 3) + (i + 0)] = hsum(c03);
C[ldc * (j + 3) + (i + 1)] = hsum(c13);
C[ldc * (j + 3) + (i + 2)] = hsum(c23);
C[ldc * (j + 3) + (i + 3)] = hsum(c33);
C[ldc * (j + 3) + (i + 4)] = hsum(c43);
C[ldc * (j + 4) + (i + 0)] = hsum(c04);
C[ldc * (j + 4) + (i + 1)] = hsum(c14);
C[ldc * (j + 4) + (i + 2)] = hsum(c24);
C[ldc * (j + 4) + (i + 3)] = hsum(c34);
C[ldc * (j + 4) + (i + 4)] = hsum(c44);
END_KERNEL()
}
NOINLINE void gemm3x4(int m0, int m, int n0, int n) {
BEGIN_KERNEL(3, 4)
D c00 = {0};
D c01 = {0};
D c02 = {0};
D c03 = {0};
D c10 = {0};
D c11 = {0};
D c12 = {0};
D c13 = {0};
D c20 = {0};
D c21 = {0};
D c22 = {0};
D c23 = {0};
for (int l = 0; l < k; l += KN) {
V k0 = load<V>(B + ldb * (j + 0) + l);
V k1 = load<V>(B + ldb * (j + 1) + l);
V k2 = load<V>(B + ldb * (j + 2) + l);
V k3 = load<V>(B + ldb * (j + 3) + l);
V a0 = load<V>(A + lda * (i + 0) + l);
c00 = madd(a0, k0, c00);
c01 = madd(a0, k1, c01);
c02 = madd(a0, k2, c02);
c03 = madd(a0, k3, c03);
V a1 = load<V>(A + lda * (i + 1) + l);
c10 = madd(a1, k0, c10);
c11 = madd(a1, k1, c11);
c12 = madd(a1, k2, c12);
c13 = madd(a1, k3, c13);
V a2 = load<V>(A + lda * (i + 2) + l);
c20 = madd(a2, k0, c20);
c21 = madd(a2, k1, c21);
c22 = madd(a2, k2, c22);
c23 = madd(a2, k3, c23);
}
C[ldc * (j + 0) + (i + 0)] = hsum(c00);
C[ldc * (j + 0) + (i + 1)] = hsum(c10);
C[ldc * (j + 0) + (i + 2)] = hsum(c20);
C[ldc * (j + 1) + (i + 0)] = hsum(c01);
C[ldc * (j + 1) + (i + 1)] = hsum(c11);
C[ldc * (j + 1) + (i + 2)] = hsum(c21);
C[ldc * (j + 2) + (i + 0)] = hsum(c02);
C[ldc * (j + 2) + (i + 1)] = hsum(c12);
C[ldc * (j + 2) + (i + 2)] = hsum(c22);
C[ldc * (j + 3) + (i + 0)] = hsum(c03);
C[ldc * (j + 3) + (i + 1)] = hsum(c13);
C[ldc * (j + 3) + (i + 2)] = hsum(c23);
END_KERNEL()
}
NOINLINE void gemm1x4(int m0, int m, int n0, int n) {
BEGIN_KERNEL(1, 4)
D c00 = {0}, e00 = {0};
D c01 = {0}, e01 = {0};
D c02 = {0}, e02 = {0};
D c03 = {0}, e03 = {0};
for (int l = 0; l < k; l += KN) {
V a = load<V>(A + lda * (i + 0) + l);
c00 = madder(a, load<V>(B + ldb * (j + 0) + l), c00, &e00);
c01 = madder(a, load<V>(B + ldb * (j + 1) + l), c01, &e01);
c02 = madder(a, load<V>(B + ldb * (j + 2) + l), c02, &e02);
c03 = madder(a, load<V>(B + ldb * (j + 3) + l), c03, &e03);
}
C[ldc * (j + 0) + (i + 0)] = hsum(c00);
C[ldc * (j + 1) + (i + 0)] = hsum(c01);
C[ldc * (j + 2) + (i + 0)] = hsum(c02);
C[ldc * (j + 3) + (i + 0)] = hsum(c03);
END_KERNEL()
}
NOINLINE void gemm4x1(int m0, int m, int n0, int n) {
BEGIN_KERNEL(4, 1)
D c00 = {0}, e00 = {0};
D c10 = {0}, e10 = {0};
D c20 = {0}, e20 = {0};
D c30 = {0}, e30 = {0};
for (int l = 0; l < k; l += KN) {
V b = load<V>(B + ldb * (j + 0) + l);
c00 = madder(load<V>(A + lda * (i + 0) + l), b, c00, &e00);
c10 = madder(load<V>(A + lda * (i + 1) + l), b, c10, &e10);
c20 = madder(load<V>(A + lda * (i + 2) + l), b, c20, &e20);
c30 = madder(load<V>(A + lda * (i + 3) + l), b, c30, &e30);
}
C[ldc * (j + 0) + (i + 0)] = hsum(c00);
C[ldc * (j + 0) + (i + 1)] = hsum(c10);
C[ldc * (j + 0) + (i + 2)] = hsum(c20);
C[ldc * (j + 0) + (i + 3)] = hsum(c30);
END_KERNEL()
}
NOINLINE void gemm1x1(int m0, int m, int n0, int n) {
BEGIN_KERNEL(1, 1)
D c = {0}, e = {0};
for (int l = 0; l < k; l += KN)
c = madder(load<V>(A + lda * i + l),
load<V>(B + ldb * j + l), c, &e);
C[ldc * j + i] = hsum(c);
END_KERNEL()
}
const TA *const A;
const TB *const B;
TC *const C;
const int k;
const int lda;
const int ldb;
const int ldc;
const int ith;
const int nth;
};
//////////////////////////////////////////////////////////////////////////////////////////
// QUANT ZERO MATRIX MULTIPLICATION
#if defined(__ARM_FEATURE_DOTPROD)
template <typename TA>
class tinyBLAS_Q0_ARM {
public:
tinyBLAS_Q0_ARM(int k,
const TA *A, int lda,
const block_q8_0 *B, int ldb,
float *C, int ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int m, int n, int task) {
if (task == GGML_TASK_TYPE_COMPUTE)
mnpack(0, m, 0, n);
}
private:
NOINLINE void mnpack(int m0, int m, int n0, int n) {
int mc, nc, mp, np;
if (m - m0 <= 0 || n - n0 <= 0)
return;
if (m - m0 >= 3 && n - n0 >= 3) {
mc = 3;
nc = 3;
gemm3x3(m0, m, n0, n);
} else {
mc = 1;
nc = 1;
gemm1x1(m0, m, n0, n);
}
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, mp, np, n);
mnpack(mp, m, np, n);
}
NOINLINE void gemm3x3(int m0, int m, int n0, int n) {
BEGIN_KERNEL(3, 3)
int32x4_t zero = vdupq_n_s32(0);
float32x4_t c00 = vdupq_n_f32(0.f);
float32x4_t c01 = vdupq_n_f32(0.f);
float32x4_t c02 = vdupq_n_f32(0.f);
float32x4_t c10 = vdupq_n_f32(0.f);
float32x4_t c11 = vdupq_n_f32(0.f);
float32x4_t c12 = vdupq_n_f32(0.f);
float32x4_t c20 = vdupq_n_f32(0.f);
float32x4_t c21 = vdupq_n_f32(0.f);
float32x4_t c22 = vdupq_n_f32(0.f);
const TA *Ap0 = A + lda * (i + 0);
const TA *Ap1 = A + lda * (i + 1);
const TA *Ap2 = A + lda * (i + 2);
const block_q8_0 *Bp0 = B + ldb * (j + 0);
const block_q8_0 *Bp1 = B + ldb * (j + 1);
const block_q8_0 *Bp2 = B + ldb * (j + 2);
for (int l = 0; l < k; ++l) {
c00 = vmlaq_n_f32(
c00,
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap0 + l), load_lo(Bp0 + l)),
load_hi(Ap0 + l), load_hi(Bp0 + l))),
unhalf(Ap0[l].d) * unhalf(Bp0[l].d));
c01 = vmlaq_n_f32(
c01,
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap0 + l), load_lo(Bp1 + l)),
load_hi(Ap0 + l), load_hi(Bp1 + l))),
unhalf(Ap0[l].d) * unhalf(Bp1[l].d));
c02 = vmlaq_n_f32(
c02,
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap0 + l), load_lo(Bp2 + l)),
load_hi(Ap0 + l), load_hi(Bp2 + l))),
unhalf(Ap0[l].d) * unhalf(Bp2[l].d));
c10 = vmlaq_n_f32(
c10,
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap1 + l), load_lo(Bp0 + l)),
load_hi(Ap1 + l), load_hi(Bp0 + l))),
unhalf(Ap1[l].d) * unhalf(Bp0[l].d));
c11 = vmlaq_n_f32(
c11,
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap1 + l), load_lo(Bp1 + l)),
load_hi(Ap1 + l), load_hi(Bp1 + l))),
unhalf(Ap1[l].d) * unhalf(Bp1[l].d));
c12 = vmlaq_n_f32(
c12,
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap1 + l), load_lo(Bp2 + l)),
load_hi(Ap1 + l), load_hi(Bp2 + l))),
unhalf(Ap1[l].d) * unhalf(Bp2[l].d));
c20 = vmlaq_n_f32(
c20,
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap2 + l), load_lo(Bp0 + l)),
load_hi(Ap2 + l), load_hi(Bp0 + l))),
unhalf(Ap2[l].d) * unhalf(Bp0[l].d));
c21 = vmlaq_n_f32(
c21,
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap2 + l), load_lo(Bp1 + l)),
load_hi(Ap2 + l), load_hi(Bp1 + l))),
unhalf(Ap2[l].d) * unhalf(Bp1[l].d));
c22 = vmlaq_n_f32(
c22,
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap2 + l), load_lo(Bp2 + l)),
load_hi(Ap2 + l), load_hi(Bp2 + l))),
unhalf(Ap2[l].d) * unhalf(Bp2[l].d));
}
C[ldc * (j + 0) + (i + 0)] = hsum(c00);
C[ldc * (j + 0) + (i + 1)] = hsum(c10);
C[ldc * (j + 0) + (i + 2)] = hsum(c20);
C[ldc * (j + 1) + (i + 0)] = hsum(c01);
C[ldc * (j + 1) + (i + 1)] = hsum(c11);
C[ldc * (j + 1) + (i + 2)] = hsum(c21);
C[ldc * (j + 2) + (i + 0)] = hsum(c02);
C[ldc * (j + 2) + (i + 1)] = hsum(c12);
C[ldc * (j + 2) + (i + 2)] = hsum(c22);
END_KERNEL()
}
NOINLINE void gemm1x1(int m0, int m, int n0, int n) {
BEGIN_KERNEL(1, 1)
float32x4_t acc = vdupq_n_f32(0.f);
const TA *Ap = A + lda * i;
const block_q8_0 *Bp = B + ldb * j;
for (int l = 0; l < k; ++l) {
acc = vmlaq_n_f32(acc,
vcvtq_f32_s32(vdotq_s32(
vdotq_s32(vdupq_n_s32(0), load_lo(Ap + l), load_lo(Bp + l)),
load_hi(Ap + l), load_hi(Bp + l))),
unhalf(Ap[l].d) * unhalf(Bp[l].d));
}
C[ldc * j + i] = hsum(acc);
END_KERNEL()
}
inline int8x16_t load_lo(const block_q8_0 *b) {
return vld1q_s8(b->qs);
}
inline int8x16_t load_hi(const block_q8_0 *b) {
return vld1q_s8(b->qs + 16);
}
inline int8x16_t load_lo(const block_q4_0 *b) {
return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs),
vdupq_n_u8(0x0f))),
vdupq_n_s8(0x8));
}
inline int8x16_t load_hi(const block_q4_0 *b) {
return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)),
vdupq_n_s8(0x8));
}
const TA *const A;
const block_q8_0 *const B;
float *const C;
const int k;
const int lda;
const int ldb;
const int ldc;
const int ith;
const int nth;
};
#endif // __ARM_FEATURE_DOTPROD
#if defined(__AVX2__) || defined(__AVX512F__)
template <typename TA, typename TB, typename TC>
class tinyBLAS_Q0_AVX2 {
public:
tinyBLAS_Q0_AVX2(int k,
const TA *A, int lda,
const TB *B, int ldb,
TC *C, int ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int m, int n, int task) {
if (task == GGML_TASK_TYPE_COMPUTE)
mnpack(0, m, 0, n);
}
private:
NOINLINE void mnpack(int m0, int m, int n0, int n) {
int mc, nc, mp, np;
if (m - m0 <= 0 || n - n0 <= 0)
return;
if (m - m0 >= 4 && n - n0 >= 3) {
mc = 4;
nc = 3;
gemm4x3(m0, m, n0, n);
} else if (m - m0 >= 4 && n - n0 >= 1) {
mc = 4;
nc = 1;
gemm4x1(m0, m, n0, n);
} else if (m - m0 >= 1 && n - n0 >= 4) {
mc = 1;
nc = 4;
gemm1x4(m0, m, n0, n);
} else {
mc = 1;
nc = 1;
gemm1x1(m0, m, n0, n);
}
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, mp, np, n);
mnpack(mp, m, np, n);
}
NOINLINE void gemm4x3(int m0, int m, int n0, int n) {
BEGIN_KERNEL(4, 3)
__m256 c00 = _mm256_setzero_ps();
__m256 c10 = _mm256_setzero_ps();
__m256 c20 = _mm256_setzero_ps();
__m256 c30 = _mm256_setzero_ps();
__m256 c01 = _mm256_setzero_ps();
__m256 c11 = _mm256_setzero_ps();
__m256 c21 = _mm256_setzero_ps();
__m256 c31 = _mm256_setzero_ps();
__m256 c02 = _mm256_setzero_ps();
__m256 c12 = _mm256_setzero_ps();
__m256 c22 = _mm256_setzero_ps();
__m256 c32 = _mm256_setzero_ps();
const TA *Ap0 = A + lda * (i + 0);
const TA *Ap1 = A + lda * (i + 1);
const TA *Ap2 = A + lda * (i + 2);
const TA *Ap3 = A + lda * (i + 3);
const TB *Bp0 = B + ldb * (j + 0);
const TB *Bp1 = B + ldb * (j + 1);
const TB *Bp2 = B + ldb * (j + 2);
for (int l = 0; l < k; ++l) {
float da0 = unhalf(Ap0[l].d);
float da1 = unhalf(Ap1[l].d);
float da2 = unhalf(Ap2[l].d);
float da3 = unhalf(Ap3[l].d);
__m256i e0 = load(Ap0 + l);
__m256i e1 = load(Ap1 + l);
__m256i e2 = load(Ap2 + l);
__m256i e3 = load(Ap3 + l);
float db0 = unhalf(Bp0[l].d);
__m256 d00 = _mm256_set1_ps(da0 * db0);
__m256 d10 = _mm256_set1_ps(da1 * db0);
__m256 d20 = _mm256_set1_ps(da2 * db0);
__m256 d30 = _mm256_set1_ps(da3 * db0);
__m256i f0 = load(Bp0 + l);
__m256i u0 = _mm256_sign_epi8(f0, f0);
__m256i s00 = _mm256_sign_epi8(e0, f0);
__m256i s10 = _mm256_sign_epi8(e1, f0);
__m256i s20 = _mm256_sign_epi8(e2, f0);
__m256i s30 = _mm256_sign_epi8(e3, f0);
c00 = madd(d00, updot(u0, s00), c00);
c10 = madd(d10, updot(u0, s10), c10);
c20 = madd(d20, updot(u0, s20), c20);
c30 = madd(d30, updot(u0, s30), c30);
float db1 = unhalf(Bp1[l].d);
__m256 d01 = _mm256_set1_ps(da0 * db1);
__m256 d11 = _mm256_set1_ps(da1 * db1);
__m256 d21 = _mm256_set1_ps(da2 * db1);
__m256 d31 = _mm256_set1_ps(da3 * db1);
__m256i f1 = load(Bp1 + l);
__m256i u1 = _mm256_sign_epi8(f1, f1);
__m256i s01 = _mm256_sign_epi8(e0, f1);
__m256i s11 = _mm256_sign_epi8(e1, f1);
__m256i s21 = _mm256_sign_epi8(e2, f1);
__m256i s31 = _mm256_sign_epi8(e3, f1);
c01 = madd(d01, updot(u1, s01), c01);
c11 = madd(d11, updot(u1, s11), c11);
c21 = madd(d21, updot(u1, s21), c21);
c31 = madd(d31, updot(u1, s31), c31);
float db2 = unhalf(Bp2[l].d);
__m256 d02 = _mm256_set1_ps(da0 * db2);
__m256 d12 = _mm256_set1_ps(da1 * db2);
__m256 d22 = _mm256_set1_ps(da2 * db2);
__m256 d32 = _mm256_set1_ps(da3 * db2);
__m256i f2 = load(Bp2 + l);
__m256i u2 = _mm256_sign_epi8(f2, f2);
__m256i s02 = _mm256_sign_epi8(e0, f2);
__m256i s12 = _mm256_sign_epi8(e1, f2);
__m256i s22 = _mm256_sign_epi8(e2, f2);
__m256i s32 = _mm256_sign_epi8(e3, f2);
c02 = madd(d02, updot(u2, s02), c02);
c12 = madd(d12, updot(u2, s12), c12);
c22 = madd(d22, updot(u2, s22), c22);
c32 = madd(d32, updot(u2, s32), c32);
}
C[ldc * (j + 0) + (i + 0)] = hsum(c00);
C[ldc * (j + 0) + (i + 1)] = hsum(c10);
C[ldc * (j + 0) + (i + 2)] = hsum(c20);
C[ldc * (j + 0) + (i + 3)] = hsum(c30);
C[ldc * (j + 1) + (i + 0)] = hsum(c01);
C[ldc * (j + 1) + (i + 1)] = hsum(c11);
C[ldc * (j + 1) + (i + 2)] = hsum(c21);
C[ldc * (j + 1) + (i + 3)] = hsum(c31);
C[ldc * (j + 2) + (i + 0)] = hsum(c02);
C[ldc * (j + 2) + (i + 1)] = hsum(c12);
C[ldc * (j + 2) + (i + 2)] = hsum(c22);
C[ldc * (j + 2) + (i + 3)] = hsum(c32);
END_KERNEL()
}
NOINLINE void gemm4x1(int m0, int m, int n0, int n) {
BEGIN_KERNEL(4, 1)
__m256 c0 = _mm256_setzero_ps();
__m256 c1 = _mm256_setzero_ps();
__m256 c2 = _mm256_setzero_ps();
__m256 c3 = _mm256_setzero_ps();
const TA *Ap0 = A + lda * (i + 0);
const TA *Ap1 = A + lda * (i + 1);
const TA *Ap2 = A + lda * (i + 2);
const TA *Ap3 = A + lda * (i + 3);
const TB *Bp = B + ldb * j;
for (int l = 0; l < k; ++l) {
float db0 = unhalf(Bp[l].d);
__m256i f = load(Bp + l);
__m256i u = _mm256_sign_epi8(f, f);
__m256 d0 = _mm256_set1_ps(unhalf(Ap0[l].d) * db0);
__m256 d1 = _mm256_set1_ps(unhalf(Ap1[l].d) * db0);
__m256 d2 = _mm256_set1_ps(unhalf(Ap2[l].d) * db0);
__m256 d3 = _mm256_set1_ps(unhalf(Ap3[l].d) * db0);
__m256i e0 = load(Ap0 + l);
__m256i e1 = load(Ap1 + l);
__m256i e2 = load(Ap2 + l);
__m256i e3 = load(Ap3 + l);
__m256i s0 = _mm256_sign_epi8(e0, f);
__m256i s1 = _mm256_sign_epi8(e1, f);
__m256i s2 = _mm256_sign_epi8(e2, f);
__m256i s3 = _mm256_sign_epi8(e3, f);
__m256 g0 = updot(u, s0);
__m256 g1 = updot(u, s1);
__m256 g2 = updot(u, s2);
__m256 g3 = updot(u, s3);
c0 = madd(d0, g0, c0);
c1 = madd(d1, g1, c1);
c2 = madd(d2, g2, c2);
c3 = madd(d3, g3, c3);
}
C[ldc * j + (i + 0)] = hsum(c0);
C[ldc * j + (i + 1)] = hsum(c1);
C[ldc * j + (i + 2)] = hsum(c2);
C[ldc * j + (i + 3)] = hsum(c3);
END_KERNEL()
}
NOINLINE void gemm1x4(int m0, int m, int n0, int n) {
BEGIN_KERNEL(1, 4)
__m256 c0 = _mm256_setzero_ps();
__m256 c1 = _mm256_setzero_ps();
__m256 c2 = _mm256_setzero_ps();
__m256 c3 = _mm256_setzero_ps();
const TB *Bp0 = B + ldb * (j + 0);
const TB *Bp1 = B + ldb * (j + 1);
const TB *Bp2 = B + ldb * (j + 2);
const TB *Bp3 = B + ldb * (j + 3);
const TA *Ap = A + lda * i;
for (int l = 0; l < k; ++l) {
float da0 = unhalf(Ap[l].d);
__m256i f = load(Ap + l);
__m256i u = _mm256_sign_epi8(f, f);
__m256 d0 = _mm256_set1_ps(unhalf(Bp0[l].d) * da0);
__m256 d1 = _mm256_set1_ps(unhalf(Bp1[l].d) * da0);
__m256 d2 = _mm256_set1_ps(unhalf(Bp2[l].d) * da0);
__m256 d3 = _mm256_set1_ps(unhalf(Bp3[l].d) * da0);
__m256 g0 = updot(u, _mm256_sign_epi8(load(Bp0 + l), f));
__m256 g1 = updot(u, _mm256_sign_epi8(load(Bp1 + l), f));
__m256 g2 = updot(u, _mm256_sign_epi8(load(Bp2 + l), f));
__m256 g3 = updot(u, _mm256_sign_epi8(load(Bp3 + l), f));
c0 = madd(d0, g0, c0);
c1 = madd(d1, g1, c1);
c2 = madd(d2, g2, c2);
c3 = madd(d3, g3, c3);
}
C[ldc * (j + 0) + i] = hsum(c0);
C[ldc * (j + 1) + i] = hsum(c1);
C[ldc * (j + 2) + i] = hsum(c2);
C[ldc * (j + 3) + i] = hsum(c3);
END_KERNEL()
}
NOINLINE void gemm1x1(int m0, int m, int n0, int n) {
BEGIN_KERNEL(1, 1)
__m256 c = _mm256_setzero_ps();
const TA *Ap = A + lda * i;
const TB *Bp = B + ldb * j;
for (int l = 0; l < k; ++l) {
__m256 d = _mm256_set1_ps(unhalf(Ap[l].d) * unhalf(Bp[l].d));
__m256i e = load(Ap + l);
__m256i f = load(Bp + l);
__m256 g = updot(_mm256_sign_epi8(e, e), _mm256_sign_epi8(f, e));
c = madd(d, g, c);
}
C[ldc * j + i] = hsum(c);
END_KERNEL()
}
inline __m256i load(const block_q8_0 *b) {
return _mm256_loadu_si256((const __m256i *)b->qs);
}
inline __m256i load(const block_q4_0 *b) {
return _mm256_sub_epi8(denibble(b->qs), _mm256_set1_epi8(8));
}
inline __m256 updot(__m256i u, __m256i s) {
__m256i res;
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s);
#else
res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s));
#endif
return _mm256_cvtepi32_ps(res);
}
static inline __m256i denibble(const uint8_t *p) {
const __m128i tmp = _mm_loadu_si128((const __m128i *)p);
const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
const __m256i lowMask = _mm256_set1_epi8(15);
return _mm256_and_si256(lowMask, bytes);
}
const TA *const A;
const TB *const B;
TC *const C;
const int k;
const int lda;
const int ldb;
const int ldc;
const int ith;
const int nth;
};
#endif // __AVX2__
} // namespace
/**
* Performs optimized matrix multiplication on CPU.
*
* This subroutine may compute C = Aᵀ * B with column major ordering.
* Despite its name, this isn't a generalized implementation. Work is
* only performed when a handwritten kernel is written and available.
* Otherwise the caller should fall back to a general matmul routine.
*
* For example, for single-threaded single-precision GEMM you can say
*
* llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc,
* 0, 1, GGML_TASK_TYPE_COMPUTE,
* GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32);
*
* @param m is rows in `A` and `C`
* @param n is cols in `B` and `C`
* @param k is cols in `A` and rows in `B`
* @param A is first input matrix (always transposed)
* @param lda is row stride of `A`
* @param B is second input matrix (never transposed)
* @param ldb is row stride of `B`
* @param C is input/output array of output matrices
* @param ldc is row stride of `C`
* @param ith is thread id (must be less than `nth`)
* @param nth is number of threads (must be greater than zero)
* @param task is GGML task type
* @param Atype is GGML data type of `A`
* @param Btype is GGML data type of `B`
* @param Ctype is GGML data type of `C`
* @return true if this function was able to service the matmul request
*/
bool llamafile_sgemm(int m, int n, int k, const void *A, int lda, const void *B, int ldb, void *C,
int ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype) {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
assert(1ll * lda * m <= 0x7fffffff);
assert(1ll * ldb * n <= 0x7fffffff);
assert(1ll * ldc * n <= 0x7fffffff);
if (Ctype != GGML_TYPE_F32)
return false;
switch (Atype) {
case GGML_TYPE_F32: {
if (Btype != GGML_TYPE_F32)
return false;
#if defined(__AVX512F__)
if (k % 16)
return false;
tinyBLAS<16, __m512, __m512, float, float, float> tb{
k, (const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n, task);
return true;
#elif defined(__AVX__) || defined(__AVX2__)
if (k % 8)
return false;