-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_datapoints.py
147 lines (116 loc) · 5.2 KB
/
find_datapoints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import datafile2waterfall
import tle_to_freqs
import numpy as np
import matplotlib.pyplot as plt
from yaml_reader import YamlReader
from skimage import filters
filename = 'FUNcube-1_39444_201808311030'
yml = YamlReader(filename)
dt = 0.5
nfft = np.power(2, 16)
f0 = 146005152 # actual value
# f0 = 145.92e6 # transmitted frequency
ftune = yml.tuningfrequency()
half_sample_rate = int(yml.sample_rate()/2)
# f0 = ftune
# f0 = ftune - half_sample_rate
# f0 = ftune + half_sample_rate
signal_width = 1200
left_frequency = 3e4
right_frequency = 4e4
waterfall = datafile2waterfall.datafile2waterfall(filename, dt, nfft, left_frequency, right_frequency)
frequencies, times = tle_to_freqs.tle2freqs_and_times(filename, dt, f0)
def shift_frequencies(freqs, left_freq):
lowest_freq = np.min(freqs)
diff = lowest_freq - left_freq
return np.array(freqs)-diff + (signal_width/2)
corrected_freqs = np.array(frequencies) - ftune
# corrected_freqs = shift_frequencies(frequencies, left_frequency)
left_line = corrected_freqs - 600
right_line = corrected_freqs + 600
def find_brightest_pixels(freqs, wfall, bandwidth):
locs = []
for i in range(len(wfall)):
waterfall_line = wfall[i]
frequency = freqs[i]
half_bandwidth = int(bandwidth / 2)
left_index = frequency2index(frequency - half_bandwidth, left_frequency, right_frequency, len(waterfall_line))
right_index = frequency2index(frequency + half_bandwidth, left_frequency, right_frequency, len(waterfall_line))
part_of_array = waterfall_line[left_index: right_index]
highest = np.argmax(part_of_array) + left_index
locs.append(index2frequency(highest, left_frequency, right_frequency, len(waterfall_line)))
return locs
def find_brightest_pixels2(freqs, wfall, bandwidth):
locs = []
ts = []
brightness = 0
for i in range(len(wfall)):
next10 = wfall[i:i+20]
brightest_value = - np.inf
brightest_index = 0
brightest_time = 0
for j in range(len(next10)):
line = wfall[i+j]
freq = freqs[i+j]
half_bandwidth = int(bandwidth / 2)
left_index = frequency2index(freq - half_bandwidth, left_frequency, right_frequency,
len(line))
right_index = frequency2index(freq + half_bandwidth, left_frequency, right_frequency,
len(line))
part_of_array = line[left_index: right_index]
brightest_candidate_index = np.argmax(part_of_array)
brightest_candidate_value = part_of_array[brightest_candidate_index]
if brightest_candidate_value > brightest_value:
brightest_value = brightest_candidate_value
brightest_index = brightest_candidate_index + left_index
brightest_time = i+j
brightness += brightest_value
locs.append(index2frequency(brightest_index, left_frequency, right_frequency, len(wfall[0])))
ts.append(brightest_time*dt)
return locs, ts, brightness
def frequency2index(freq, lfreq, rfreq, width):
return int(np.max([0,(freq - lfreq) / ((rfreq - lfreq) / width)]))
def index2frequency(index, lfreq, rfreq, width):
return int((index * ((rfreq-lfreq)/width)) + lfreq)
def find_carrier_frequency(lfreqs, lts, rfreqs, rts):
fs = []
ts = []
for lfreq, lt, rfreq, rt in zip(lfreqs, lts, rfreqs, rts):
if lt == rt:
diff = rfreq-lfreq
fs.append(lfreq + (diff/2))
ts.append(lt)
return fs, ts
def plot_figures():
fig, ax = plt.subplots(ncols=2)
ax[0].plot(corrected_freqs, times, 'b')
ax[0].plot(left_line, times, 'c')
ax[0].plot(right_line, times, 'm')
ax[0].imshow(10 * np.log10(waterfall), aspect='auto', extent=[left_frequency, right_frequency, times[-1], 0])
ax[1].plot(corrected_freqs, times, 'b')
ax[1].plot(left_line, times, 'c')
ax[1].plot(right_line, times, 'm')
ax[1].imshow(10 * np.log10(edges), aspect='auto', extent=[left_frequency, right_frequency, times[-1], 0])
fig, ax3 = plt.subplots(ncols=2)
ax3[0].plot(left_locs[100:-200], ts_l[100:-200], 'bo')
ax3[0].plot(right_locs[100:-200], ts_r[100:-200], 'ro')
ax3[0].plot(carrier_f, carrier_t, 'mo')
ax3[0].plot(x_new, y_new)
ax3[0].imshow(10 * np.log10(waterfall), aspect='auto', extent=[left_frequency, right_frequency, times[-1], 0])
ax3[0].plot(left_line, times, 'c')
ax3[1].plot(left_locs2, ts_l2, 'bo')
ax3[1].plot(right_locs_2, ts_r2, 'ro')
ax3[1].imshow(10 * np.log10(edges), aspect='auto', extent=[left_frequency, right_frequency, times[-1], 0])
ax3[1].plot(left_line, times, 'c')
edges = filters.sobel(waterfall)
left_locs, ts_l, brigl = find_brightest_pixels2(left_line, waterfall, 400)
right_locs, ts_r, brigr = find_brightest_pixels2(right_line, waterfall, 400)
left_locs2, ts_l2, brigl2 = find_brightest_pixels2(left_line, edges, 400)
right_locs_2, ts_r2, brigr2 = find_brightest_pixels2(right_line, edges, 400)
carrier_f, carrier_t = find_carrier_frequency(left_locs, ts_l, right_locs, ts_r)
z = np.polyfit(carrier_f, carrier_t, 7)
f = np.poly1d(z)
x_new = np.linspace(carrier_f[0], carrier_f[-1])
y_new = f(x_new)
plot_figures()
plt.show()