-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
168 lines (137 loc) · 5.91 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""
Collect data for benchmark tasks.
"""
import torch
import numpy as np
from datetime import datetime, timedelta
import yaml
import random
import os
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def add_yml_params(args):
data = yaml.load(args.config_file, Loader=yaml.Loader)
delattr(args, 'config_file')
arg_dict = args.__dict__
for key, value in data.items():
arg_dict[key] = value
def get_lat2d(grid, dataset=None):
if grid == 5.625:
lat2d = dataset['era5625/lat2d']
else:
lat = np.linspace(-89.296875, 89.296875, 128)
lat2d = np.expand_dims(lat, axis=1).repeat(256, 1)
return lat2d
def add_device_hparams(hparams):
num_gpus = torch.cuda.device_count() if hparams['gpus'] == -1 else hparams['gpus']
if num_gpus > 0:
hparams['batch_size'] *= num_gpus
hparams['num_workers'] *= num_gpus
hparams['multi_gpu'] = num_gpus > 1
def get_vbl_name(var:str, grid: float):########
if grid == 5.625:
if var == 'clbt':
return 'simsat5625/clbt'
if var == 'precipitationcal':####for output
return 'imerg5625/precipitationcal'
if (var[:4] == 'ciwc') or (var[:4] == 'clwc'):#first 4 charter
return "era5625/" + (var.replace('-', '_') + 'hPa' if '-' in var else var)
return "era5625/" + (var.replace('-', '_') + 'hPa' if '-' in var else var)#tp
else:#useless maybe
if var == 'precipitationcal':
return 'imerg140625/precipitationcal'
if var == 'clbt':
return 'simsat140625/clbt'
if (var[:4] == 'ciwc') or (var[:4] == 'clwc'):
return "era140625/" + (var.replace('-', '_') + 'hPa' if '-' in var else var)
return "era140625/" + (var.replace('-', '_') + 'hPa' if '-' in var else var)
def get_var_name(vbl: str):
return vbl.split('/')[1].replace(':', '-').replace('_', '-').replace('hPa', '')
def is_vbl_const(var: str):
if var in ['lat', 'lon', 'orography', 'lsm', 'slt', 'lat2d', 'lon2d']:
return True
return False
def local_time_shift(longitude: float):
return timedelta(hours=(np.mod(longitude + 180, 360) - 180) / 180 * 12)
def get_local_shift(grid, dataset):
if grid == 5.625:
lon2d = dataset['era5625/lon2d']
else:
lon = np.linspace(0, 358.59375, 256)
lon2d = np.expand_dims(lon, axis=1).repeat(128, 1).T
time_shift = np.vectorize(local_time_shift)(lon2d)
return time_shift
def apply_normalization(inputs, output, categories, normalizer):
for i, v in enumerate(categories['input']):
if v not in ['hour', 'day', 'month']:
inputs[:, :, i, :, :] = (inputs[:, :, i, :, :] - normalizer[v]['mean']) / normalizer[v]['std']
target_v = categories['output'][0]
output[:, 0, :, :] = np.log(output[:, 0, :, :] / normalizer[target_v]['std'] + 1)
return inputs, output
def leadtime_into_maxtrix(lead_times: list,
seq_len: int,
forecast_freq: int,
forecast_n_steps: int,
latlon: tuple):
"""
return shape of [bsz, seq_len, forecast_n_steps, lat, lon]
"""
bsz = len(lead_times)
leadtime = np.zeros((bsz, seq_len, forecast_n_steps, latlon[0], latlon[1]))
for batch_i, lt in enumerate(lead_times):
leadtime[batch_i, :, lt // forecast_freq-1, :, :] = 1
return leadtime
def collate_fn(x_list, hparams, normalizer, time_shift):
"""
return
inputs = [bsz, seq_len, channels, lat, lon] (constants are repeated per timestep)
output = [bsz, channels, lat, lon]
lead_time = [bsz]
"""
output = []
inputs = []
lead_times = []
categories = hparams['categories']
latlon = hparams['latlon']
compute_time = [v for v in categories['input'] if v in ['hour', 'day', 'month']]
tmp = 'input_temporal_clbt' if 'clbt-0' in categories['input_temporal'] else 'input_temporal'
count=0#custom
print("count",count)
for sample in x_list:
output.append(np.concatenate([sample[0]['target'][v] for v in categories['output']], 1))
lead_times.append(int(sample[0]['__sample_modes__'].split('_')[-1]))
count=count+1####custom
#print("count",count)###custom
# temporal
inputs.append([sample[0]['label'][v] for v in categories[tmp]])
# hour, day, month
if compute_time:
time_scaling = {'hour': 24, 'day': 31, 'month': 12}
timestamps = [datetime.fromtimestamp(t) for t in sample[0]['label'][categories[tmp][0]+ '__ts']]
timestamps = np.transpose(np.tile(timestamps, (1, *latlon, 1)), (3,0,1,2))
if time_shift is not None:
timestamps -= time_shift
for m in ['hour', 'day', 'month']:
tfunc = np.vectorize(lambda t: getattr(t, m))
inputs[-1] += [tfunc(timestamps)/ time_scaling[m]]
if categories['input_static']:
inputs[-1] += [np.repeat(sample[0]['label'][v][None, :, :], hparams['seq_len'], 0) for v in categories['input_static']]
inputs[-1] = np.concatenate(inputs[-1], 1)
inputs = torch.Tensor(np.stack(inputs))
output = torch.Tensor(np.concatenate(output))
lead_times = torch.Tensor(lead_times).long()
# apply normalization
if normalizer is not None:
inputs, output = apply_normalization(inputs, output, categories, normalizer)
# concatenate lead times to inputs.
one_hot_lt = leadtime_into_maxtrix(lead_times, hparams['seq_len'], hparams['forecast_freq'], hparams['forecast_n_steps'], latlon)
one_hot_lt = torch.Tensor(one_hot_lt)
inputs = torch.cat([inputs, one_hot_lt], 2)
return inputs, output, lead_times, one_hot_lt###one_hot_lt for test