diff --git a/docs/notebooks/modelbuilder_example.ipynb b/docs/notebooks/modelbuilder_example.ipynb index 2990bcb8..a66bd51d 100644 --- a/docs/notebooks/modelbuilder_example.ipynb +++ b/docs/notebooks/modelbuilder_example.ipynb @@ -128,8 +128,8 @@ "name": "stdout", "output_type": "stream", "text": [ - ">> reading coastlines: 2.56 sec\n", - ">> reading coastlines: 2.29 sec\n" + ">> reading coastlines: 2.51 sec\n", + ">> reading coastlines: 1.43 sec\n" ] }, { @@ -175,7 +175,7 @@ "name": "stdout", "output_type": "stream", "text": [ - ">> reading coastlines: 1.06 sec\n" + ">> reading coastlines: 1.26 sec\n" ] }, { @@ -224,8 +224,8 @@ "name": "stdout", "output_type": "stream", "text": [ - ">> reading coastlines: 1.08 sec\n", - ">> reading coastlines: 2.34 sec\n" + ">> reading coastlines: 1.26 sec\n", + ">> reading coastlines: 1.73 sec\n" ] }, { @@ -263,7 +263,7 @@ "name": "stdout", "output_type": "stream", "text": [ - ">> reading coastlines: 1.23 sec\n" + ">> reading coastlines: 1.09 sec\n" ] }, { @@ -339,7 +339,7 @@ "> interp mfdataset to all PolyFile points (lat/lon coordinates)\n", "> actual extraction of data from netcdf with .load() (for 71 plipoints at once, this might take a while)\n", ">>time passed: 0.00 sec\n", - "Converting 71 plipoints to hcdfm.ForcingModel(): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71. >> done in 0.23 sec\n" + "Converting 71 plipoints to hcdfm.ForcingModel(): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71. >> done in 0.13 sec\n" ] } ], @@ -359,8 +359,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO - 2025-02-03T13:17:53Z - Checking if credentials are valid.\n", - "INFO - 2025-02-03T13:17:54Z - Valid credentials from configuration file.\n" + "INFO - 2025-02-04T15:39:32Z - Checking if credentials are valid.\n", + "INFO - 2025-02-04T15:39:33Z - Valid credentials from configuration file.\n" ] }, { @@ -374,8 +374,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO - 2025-02-03T13:17:55Z - Selected dataset version: \"202311\"\n", - "INFO - 2025-02-03T13:17:55Z - Selected dataset part: \"default\"\n" + "INFO - 2025-02-04T15:39:33Z - Selected dataset version: \"202311\"\n", + "INFO - 2025-02-04T15:39:33Z - Selected dataset part: \"default\"\n" ] }, { @@ -389,8 +389,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO - 2025-02-03T13:17:58Z - Selected dataset version: \"202311\"\n", - "INFO - 2025-02-03T13:17:58Z - Selected dataset part: \"default\"\n" + "INFO - 2025-02-04T15:39:37Z - Selected dataset version: \"202311\"\n", + "INFO - 2025-02-04T15:39:37Z - Selected dataset part: \"default\"\n" ] }, { @@ -404,8 +404,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO - 2025-02-03T13:18:02Z - Selected dataset version: \"202406\"\n", - "INFO - 2025-02-03T13:18:02Z - Selected dataset part: \"default\"\n" + "INFO - 2025-02-04T15:39:40Z - Selected dataset version: \"202406\"\n", + "INFO - 2025-02-04T15:39:40Z - Selected dataset part: \"default\"\n" ] }, { @@ -421,9 +421,9 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO - 2025-02-03T13:18:06Z - Selected dataset version: \"202311\"\n", - "INFO - 2025-02-03T13:18:06Z - Selected dataset part: \"default\"\n", - "INFO - 2025-02-03T13:18:09Z - Checking if credentials are valid.\n" + "INFO - 2025-02-04T15:39:43Z - Selected dataset version: \"202311\"\n", + "INFO - 2025-02-04T15:39:43Z - Selected dataset part: \"default\"\n", + "INFO - 2025-02-04T15:39:46Z - Checking if credentials are valid.\n" ] }, { @@ -441,7 +441,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO - 2025-02-03T13:18:09Z - Valid credentials from configuration file.\n" + "INFO - 2025-02-04T15:39:46Z - Valid credentials from configuration file.\n" ] }, { @@ -456,9 +456,9 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO - 2025-02-03T13:18:10Z - Selected dataset version: \"202311\"\n", - "INFO - 2025-02-03T13:18:10Z - Selected dataset part: \"default\"\n", - "INFO - 2025-02-03T13:18:13Z - Checking if credentials are valid.\n" + "INFO - 2025-02-04T15:39:47Z - Selected dataset version: \"202311\"\n", + "INFO - 2025-02-04T15:39:47Z - Selected dataset part: \"default\"\n", + "INFO - 2025-02-04T15:39:49Z - Checking if credentials are valid.\n" ] }, { @@ -476,7 +476,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO - 2025-02-03T13:18:14Z - Valid credentials from configuration file.\n" + "INFO - 2025-02-04T15:39:50Z - Valid credentials from configuration file.\n" ] }, { @@ -491,9 +491,9 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO - 2025-02-03T13:18:14Z - Selected dataset version: \"202311\"\n", - "INFO - 2025-02-03T13:18:14Z - Selected dataset part: \"default\"\n", - "INFO - 2025-02-03T13:18:18Z - Checking if credentials are valid.\n" + "INFO - 2025-02-04T15:39:51Z - Selected dataset version: \"202311\"\n", + "INFO - 2025-02-04T15:39:51Z - Selected dataset part: \"default\"\n", + "INFO - 2025-02-04T15:39:54Z - Checking if credentials are valid.\n" ] }, { @@ -511,7 +511,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO - 2025-02-03T13:18:19Z - Valid credentials from configuration file.\n" + "INFO - 2025-02-04T15:39:55Z - Valid credentials from configuration file.\n" ] }, { @@ -526,9 +526,9 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO - 2025-02-03T13:18:20Z - Selected dataset version: \"202311\"\n", - "INFO - 2025-02-03T13:18:20Z - Selected dataset part: \"default\"\n", - "INFO - 2025-02-03T13:18:23Z - Checking if credentials are valid.\n" + "INFO - 2025-02-04T15:39:56Z - Selected dataset version: \"202311\"\n", + "INFO - 2025-02-04T15:39:56Z - Selected dataset part: \"default\"\n", + "INFO - 2025-02-04T15:39:59Z - Checking if credentials are valid.\n" ] }, { @@ -546,7 +546,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO - 2025-02-03T13:18:24Z - Valid credentials from configuration file.\n" + "INFO - 2025-02-04T15:40:00Z - Valid credentials from configuration file.\n" ] }, { @@ -561,8 +561,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO - 2025-02-03T13:18:25Z - Selected dataset version: \"202311\"\n", - "INFO - 2025-02-03T13:18:25Z - Selected dataset part: \"default\"\n" + "INFO - 2025-02-04T15:40:00Z - Selected dataset version: \"202311\"\n", + "INFO - 2025-02-04T15:40:00Z - Selected dataset part: \"default\"\n" ] }, { @@ -579,8 +579,8 @@ "variable zos renamed to waterlevelbnd\n", "> interp mfdataset to all PolyFile points (lat/lon coordinates)\n", "> actual extraction of data from netcdf with .load() (for 71 plipoints at once, this might take a while)\n", - ">>time passed: 0.06 sec\n", - " 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71. >> done in 0.07 sec\n", + ">>time passed: 0.05 sec\n", + " 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71. >> done in 0.14 sec\n", "processing quantity: salinitybnd\n", "loading mfdataset of 4 files with pattern(s) c:\\DATA\\checkouts\\dfm_tools\\docs\\notebooks\\Vietnam_2D_model\\data\\cmems\\cmems_so_*.nc\n", "dimension depth renamed to z\n", @@ -588,8 +588,8 @@ "variable so renamed to salinitybnd\n", "> interp mfdataset to all PolyFile points (lat/lon coordinates)\n", "> actual extraction of data from netcdf with .load() (for 71 plipoints at once, this might take a while)\n", - ">>time passed: 0.03 sec\n", - "Converting 71 plipoints to hcdfm.ForcingModel(): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71. >> done in 0.14 sec\n", + ">>time passed: 0.05 sec\n", + "Converting 71 plipoints to hcdfm.ForcingModel(): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71. >> done in 0.25 sec\n", "processing quantity: temperaturebnd\n", "loading mfdataset of 4 files with pattern(s) c:\\DATA\\checkouts\\dfm_tools\\docs\\notebooks\\Vietnam_2D_model\\data\\cmems\\cmems_thetao_*.nc\n", "dimension depth renamed to z\n", @@ -597,8 +597,8 @@ "variable thetao renamed to temperaturebnd\n", "> interp mfdataset to all PolyFile points (lat/lon coordinates)\n", "> actual extraction of data from netcdf with .load() (for 71 plipoints at once, this might take a while)\n", - ">>time passed: 0.02 sec\n", - "Converting 71 plipoints to hcdfm.ForcingModel(): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71. >> done in 0.12 sec\n", + ">>time passed: 0.03 sec\n", + "Converting 71 plipoints to hcdfm.ForcingModel(): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71. >> done in 0.18 sec\n", "processing quantity: uxuyadvectionvelocitybnd\n", "loading mfdataset of 4 files with pattern(s) c:\\DATA\\checkouts\\dfm_tools\\docs\\notebooks\\Vietnam_2D_model\\data\\cmems\\cmems_uo_*.nc\n", "dimension depth renamed to z\n", @@ -610,8 +610,8 @@ "variable vo renamed to uy\n", "> interp mfdataset to all PolyFile points (lat/lon coordinates)\n", "> actual extraction of data from netcdf with .load() (for 71 plipoints at once, this might take a while)\n", - ">>time passed: 0.04 sec\n", - " 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71. >> done in 0.23 sec\n" + ">>time passed: 0.08 sec\n", + " 62 63 64 65 66 67 68 69 70 71. >> done in 0.42 sec2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61\n" ] } ], @@ -656,8 +656,8 @@ "name": "stdout", "output_type": "stream", "text": [ - ">> reading coastlines: 1.18 sec\n", - "1.49 secng coastlines: \n" + ">> reading coastlines: 1.36 sec\n", + "2.13 secng coastlines: \n" ] }, { @@ -758,12 +758,12 @@ "name": "stderr", "output_type": "stream", "text": [ - "2025-02-03 13:18:35,684 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", - "2025-02-03 13:18:35,686 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", - "2025-02-03 13:18:35,865 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", - "2025-02-03 13:18:35,867 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", - "2025-02-03 13:18:36,083 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", - "2025-02-03 13:18:36,084 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n" + "2025-02-04 15:40:14,554 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", + "2025-02-04 15:40:14,557 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", + "2025-02-04 15:40:19,688 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", + "2025-02-04 15:40:19,691 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", + "2025-02-04 15:40:19,898 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", + "2025-02-04 15:40:19,899 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n" ] }, { @@ -779,12 +779,12 @@ "name": "stderr", "output_type": "stream", "text": [ - "2025-02-03 13:18:36,238 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", - "2025-02-03 13:18:36,240 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", - "2025-02-03 13:18:36,386 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", - "2025-02-03 13:18:36,388 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", - "2025-02-03 13:18:36,597 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", - "2025-02-03 13:18:36,599 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n" + "2025-02-04 15:40:25,022 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", + "2025-02-04 15:40:25,024 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", + "2025-02-04 15:40:35,164 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", + "2025-02-04 15:40:35,166 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", + "2025-02-04 15:40:35,376 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", + "2025-02-04 15:40:35,379 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n" ] }, { @@ -800,10 +800,10 @@ "name": "stderr", "output_type": "stream", "text": [ - "2025-02-03 13:18:36,745 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", - "2025-02-03 13:18:36,747 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", - "2025-02-03 13:18:51,879 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", - "2025-02-03 13:18:51,881 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n" + "2025-02-04 15:40:40,489 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", + "2025-02-04 15:40:40,490 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", + "2025-02-04 15:40:40,619 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", + "2025-02-04 15:40:40,621 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n" ] }, { @@ -817,10 +817,10 @@ "name": "stderr", "output_type": "stream", "text": [ - "2025-02-03 13:19:02,073 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", - "2025-02-03 13:19:02,075 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", - "2025-02-03 13:19:02,232 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", - "2025-02-03 13:19:02,234 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n" + "2025-02-04 15:40:45,801 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", + "2025-02-04 15:40:45,804 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", + "2025-02-04 15:40:45,963 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", + "2025-02-04 15:40:45,965 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n" ] }, { @@ -835,10 +835,10 @@ "name": "stderr", "output_type": "stream", "text": [ - "2025-02-03 13:19:02,396 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", - "2025-02-03 13:19:02,398 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", - "2025-02-03 13:19:02,597 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", - "2025-02-03 13:19:02,600 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n" + "2025-02-04 15:40:51,087 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", + "2025-02-04 15:40:51,090 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n", + "2025-02-04 15:40:51,273 INFO [2024-09-26T00:00:00] Watch our [Forum](https://forum.ecmwf.int/) for Announcements, news and other discussed topics.\n", + "2025-02-04 15:40:51,274 WARNING [2024-06-16T00:00:00] CDS API syntax is changed and some keys or parameter names may have also changed. To avoid requests failing, please use the \"Show API request code\" tool on the dataset Download Form to check you are using the correct syntax for your API request.\n" ] }, { @@ -848,7 +848,7 @@ "found ECMWF API-key and authorization successful\n", "retrieving data from 2022-11 to 2022-11 (freq=)\n", "\"era5_chnk_2022-11.nc\" found and overwrite=False, continuing.\n", - "0.22 secng multifile dataset of 4 files (can take a while with lots of files): \n", + "0.17 secng multifile dataset of 4 files (can take a while with lots of files): \n", ">> writing file (can take a while): 0.07 sec\n" ] } @@ -904,8 +904,8 @@ "name": "stdout", "output_type": "stream", "text": [ - ">> reading coastlines: 1.84 sec\n", - "1.06 secng coastlines: \n" + ">> reading coastlines: 1.06 sec\n", + "2.14 secng coastlines: \n" ] }, { @@ -957,22 +957,22 @@ "output_type": "stream", "text": [ " x y name\n", - "3400 106.831251 18.008672 x106p83_y18p01\n", - "1047 106.002084 18.408828 x106p00_y18p41\n", - "3454 106.731251 18.100491 x106p73_y18p10\n", - "3285 106.768751 17.813287 x106p77_y17p81\n", - "3888 106.431251 18.512671 x106p43_y18p51\n", - "6223 106.010938 18.388334 x106p01_y18p39\n", - "838 106.479167 18.068939 x106p48_y18p07\n", - "3073 106.581250 18.386904 x106p58_y18p39\n", - "4013 106.509375 17.793156 x106p51_y17p79\n", - "3019 106.631250 18.352577 x106p63_y18p35\n", - "1.08 secng coastlines: \n" + "4955 106.239063 18.219449 x106p24_y18p22\n", + "7140 106.467188 17.800347 x106p47_y17p80\n", + "3199 106.581250 18.489817 x106p58_y18p49\n", + "4974 106.185939 18.268139 x106p19_y18p27\n", + "751 106.503125 17.890912 x106p50_y17p89\n", + "187 106.568750 17.974220 x106p57_y17p97\n", + "7263 106.120313 18.296771 x106p12_y18p30\n", + "4395 106.090626 18.326822 x106p09_y18p33\n", + "4247 106.326563 18.107662 x106p33_y18p11\n", + "1362 106.343750 18.077545 x106p34_y18p08\n", + "1.40 secng coastlines: \n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAFfCAYAAABqcfa6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAo0FJREFUeJztnQe4HVW5/ldCV1EwV73qvQpcFBGVIqAgVZAqoSkYehMQIoFQpCWEUALpIaG30EGEAIL0jvSLNJGOBa9/xRCalITk/J/fIu/2Oyszs2fO2edk732+93n2s/fsmbVm1syad33rW1/p19HR0REcDofD0fToP78vwOFwOBzl4ITtcDgcLQInbIfD4WgROGE7HA5Hi8AJ2+FwOFoETtgOh8PRInDCdjgcjhbBgqFNMGfOnPB///d/YfHFFw/9+vWb35fjcDgcmcD15e233w5f+MIXQv/+/fsmYUPW//3f/z2/L8PhcDhK4S9/+Uv4r//6r9AnCRvJGpx33nnhP/7jP+Lvv/3tb+Hzn/98/P3aa6+FtddeO7zzzjvxvzfffDN87GMfC7NmzYoS+QILLBDef//9WM+MGTPCZz/72fDXv/41LLXUUnH/Sy+9FOv5xCc+EeugHKPjV7/61fg//7377ruxnM636KKL1q4LUMf//M//zPMbvPzyy2GZZZaJv6mH69O1p8e/+uqr8TwLL7xwZl1F27SNEf7Tn/50baBbcsklw2KLLTbPdaRlaTP39Etf+lLcfuutt8LMmTNr9/vvf/97vD8f//jHM8vbupkR/fnPf473V/fvX//6V/jc5z6XWZZjkUgWXHDBuvcv3f/666/HZ7XEEkvU7t9nPvOZsMgii9S9Xx988EF8lnqx0vvH/aBe3b+i5/zhhx/G+513/9LjX3nllfDlL3+5JoXZfdy/P/3pT2HppZfOLPvPf/4z9o9PfvKTtftHf1pooYXqtvm9996L7eR+6/7xDtBPsu5f1rX9v//3/+K9GzBgQGxnETGl12KRPtcqZf/4xz/Ge50nxRaV5f5xrz71qU9l7i8qn96/FNwPhEvLDX2OsKUGufPOO8Pw4cPjbwiZDg8gVm4ULwFESofjgfDCUBYiYJsODjHxzfHcVB4433QAbjQdiIel4wHHQPrahvx5ie1D4bf229/pNtdCp8/br98i7KK60u3Zs2d3qpupGb9FOEVluS8Qq93PS6ltBhqOt4Sd12auwW5z//jUa7MIu0qbuW77bLRPhFNUlvbxLPPun+6HJey8NkPYut9Z9y+vrAin6P5lXTftS+sSYReV5Riu1d4/+2zS+2f/g6gY4BgcIDuugwHOnitFei1l95Utm0fYRWW5bjvgVSmf3r88dEV12zaELUCk9913XxxZkWZ0U5BGIOn//M//DMsvv3w8DkKmM+omMzLyEN54440o7SE98WJIQuGlZB8PQ5KDw1EKI0Z81Bd3223efccdx0gQj2lVMKi9+OKLcYa17LLLVtbNOvooYR9xxBHh5JNPDscee2yn/5GMmW4jBT733HM1dQnTUSQAJDcIm1GRKSDH8ptpjUgf6YiRl44J6YvMwfTp0zt1Uuqz23Rozol0D5Ds80A5SUKA67NlUZcw8OSN1DrOTu/0H22wqpYUVmoCDEpMgQEDlUUaN4xrtm3mfua1mbK2fNpm7q0ty3XbdqZtTq9bKim1IV3fsOXT+8X9VZu5ZntdKdI207/sddfu2QILhAWGDw+ffPPNEMaPn/vXAuETEyaEMGpUCCNHRundlkVoyLvmrDb/4x//6NRHpG7KelZpmxFE1Gb6uJ0xpEDytNfCNSMcrbfeerVZn6Nn0HaEvc4664Srr746PPjgg51eUl4qXj4kZfSPSMh0aBT/EHQqYTPV5b/HHnssTu0ox1T/61//eizPh/+eeeaZqLtF3w2509kFXhrpwCAgXlCkfADhIuXrRaIu+1JRlo9gy6K/tsczewDaphwDhMD/Kss3LyYkDtA10l778v/v//5v7bqZgaisrpMBSyTKfnudqI3y2gwBqayseuygRz1MqXXNtiwDKHWXbbPaatvMcxLBcO2WXGybIdm8NnMezqnr1H6VhXTtdUPgseygQeFTr70WPjNhQpg+Z06YMXhwWHLKlDBg0qQwfciQMGPQoNDx8svztBkVXlGb6bMCJJq2WcfSP7k/UinVazPvhdpMW7kuhBKBulWWerkO9nPNLl33HNqOsMGBBx4YdtlllzBkyJBO/9PB6XgQFBKGXlh00lkSNvvptEzxrD6TDoyUCunRyVdbbbVI4JCwXTSzZQEd2RIjL5P287LZBYy0LMgrC7paFkmKa7cSVVreluU6tQ/JlXtiX/SiNnPvtQ+iZkC0i2ZpWc7VE23mfwY9u79sm3n2XDsDfl5ZtlWe9mvfh+PHhzcWWigMGD8+DDj9dMT3SNYDJk4MA0q0uTt9hHuNQGFnC0VtBtqn2aMWHbPK8j7Rh/ife6sFXkdj0ZZD4be+9a1I2DfffPM8+yBmJKxHHnkk3H///eH555+PLyEdDWkGqRdSfuqpp+J/kq745jgkSgif/5AQv/jFL0ail9WAw1GENw84AJ1CJGu+kbTbBZA0JM6sgvfIzjYd84mw77nnnrDFFlvUdLvXXHNNp/2oEgYPHhzNeBhxUSGcccYZhXVOnTo11mU/qY6tKg466KCoq0ZatqAzIVEj2TGlw3rkK1/5Suxs/IcEwzb76HwsXuobCRqdNxIE/62wwgpx6ojukPJIXnkfWRd0dX9Xj2103X2hrp6se/GJEyNZd8wl7SUmT26KNjeqLsB7Aj/wbvBByKlyvxv1md3ANjf602sqEfSQK664Ythjjz3CNttsM8/+oUOHhjvuuCNcfPHFUUd8yy23hP322y8+wIEDB+bWiyoCghW6661I+b333jvaZR9yyCG1/yFiCBYpmqkeA8zjjz8eV7e5BnTYDDRI1CD9tr+RsCFv6qNTMjhQL/pR6fvsFJTj87bRMZY9lqlu1bJWX2uPlz7XqkRs+aK6KMe6AINgmeu0v7XAhpok67rSskV11WtjVlmek1UBFNXNdapu1GpcO/0mq+60PGX1+5OTJkWd9YyDDgpv/Pznkaz/Y8KEMAM13c9/Xrcu9MZWB522uV5Z9NTa5v1IrzPv/smO3VpF2bJpXQL36dlnn43CV9H7nFXWXodtc4q076f1AtvH0v15i6S8v9ZsN6981rnpW/STdJFe6M7MozJhb7rppvGTB9QMu+66a1wxBpDmmWeeGR5++OFCwuaBWsuHRmCjjTYKv/71r8Mf/vCHaNUB9JLSiSAb1BurrLJKvPEsKvKAZEcsHZ3V1aX/8Y16hGtHZcJDQj2C9I2Kxepo6cB524y6ZY9Nj693bNE2HTbVYdv9RWWzdNhlr5P/eZHKtrG7bbZlIYBUh122zVk67KJnV/uN6d6kSeGNoUPDkuPGhagNHj8+LkAOmDDhI/3wsGGFdVXtI3Ybwk112PTVMm2WLbPVYafH27q4ThZ4+YYHsqx0LNK6LNI2VykLrONRlbIIcLwbRY4zeeVRkTLIoS7NQnfMgRuuw15zzTXDddddF0c+JAYcWdATQ55FQGLh5vJgt9xyy/D73/++8HiIgobbTwrUG8ccc0y44ooroooGtYb9cLM5J4SDhPzCCy/EDoLkyMMQGC1ZobfWEALHMeugrU8//XSsi3PljeqOPorZs8PsESM+0mEbRB32yJEf2WG3AbS+gwDA+9dd1aajh61EJk+eHKVqSEu2yGeffXY0t8vDcsstF1UXLBZCimPHjo3ED2nnubSOGjVqHlvrLKBzRtql/rxBA6JmkRGJCymCTse1a7ERaNXb/sc3AweDE8BChKklo7KVOh0OnGI6mCLP7SudMGxYaHXwHrDQCFG740yLETY20EjZSK8sUu6///5xOrbhhhtmllljjTXiR4CsUWGgSjmOqWSOgwz6ciFv2sUoj8UIevS11loruqunQEKGZL/5zW9GvTszAhZLmdpgp0wn5FteXKoXlQrflIXQFQsDc7/f/va3UWqXqiE1mUr1WNYGGylf5wWp/o96i5Ld4zRiVRzWYYUZQZ5uTVN+e27rvME5U+eXVHeHXk9lU+mqqCxtZrBT2fSFp2xRm1lHsG2WByugvXbGlN5Tpq+2zVYnzzltXem1c6xtc+pwUuQsxDXZsumsLHWuStufttm2MavNqY7Wttnac/Ms0jZbyAtYZZkdI7Ssu+668/RzRxMTNg/9yCOPDNOmTQubb755/A+pmUU9pOY8wk6Bnm3llVeuGe5ngY5RtnOgr9x+++3DJZdcEn7605/Osx9yQCKG9G+44Yb4AlM3nRDdNDpeOdNIwuZl0PVxPIuVEBZkif6OoDVI9tJ1cg7UKirDb0he23ZRk/so93eBF0TH8psZgHW757deaNphy0IK1vFDMwjASwtJi1zRuzO4qjyLVSrLS0y77KKjdZwRgdg24+yi8gyEKgspcF0iFUgg1Q3b6+ZZcI32/tk2cy1594v2Ub8IMXWcQTJkJqfynEtlIU3aIN2vHGe4h6qLNQ+V5RzcQ5VnIV3n4ZlyjzRgynvTXrc9N32CfpXVZu4V/TGvzRAy/VFtpl76lQ2elddmymHdoTanjjMci15bZblG+gnHIbB4eOMWIWxeXgWKseBhVzFl4SVGRbHZZps15LqQgn/84x9HMqZj5alZ6HB01tVXXz2WoXMjUdMmXlw6piRs9N+8iJAbnRfy5eXk5V111VWjagXzQCtlylRQSJ1E5BSB1MbLkFeWwUSOPbaNFrYs15Ln+JE6zqTOGRynstwHG1ArXXRkBsI9yrtuW3fqOAP58Mkry7Es4liLAXudqSmobIIBREMflFory3HGPgvuh3WWok2avaX3j/vB/S3znCFq7nN6//LK8h4x47Pvk71/3Iu8NlOPDf6U5TiT12aInTZp0Sx1nEnvH9dAm+iPqBcRcuoFPnL0EmFLyhSQJpCgeeAs5DEtOvTQQ2sd8+677w4XXnhhGD83fgJARUFnQA8NRo4cGb773e/GDoPkMmbMmChN7LXXXqFRoKNjmz1p0qS4EJkFdUQI88Ybb4yDBjMF2oeKRK7VkrCRADmWlxiiZjDA5JH/bchMh6MvAA5g0EDSRy2YZyXh6EXCfvTRR8P6669f25YeGVM+HGAuv/zyqF/ecccdo6oA0j7hhBPCvvvuWysD4VmpAcJDVcH0nFH829/+djQPhCQbCciU0R8TQ6ToLCCBoNaAiDFJgpjRbSM1W3dcK2FzPB2VD1NN2lZkDuRwtCvo+xA1M1UEGIXNdcwnwobEihZ/IMTzzz+/sI677rqr0/aECRPip6eBlI2Ofbfddos68jyDe8XEZgqrSHdI3Nhzb7LJJnHW8L3vfS/qNpG60WsybYTkKUe90oOjJmDWwCBl4yukOlgbzIkpKfpNu/hlddxI8ApOlVWXggRlleVamU4reFGqw04DDNmytI3BSQtSqQ6bfcw07MKuLU/dqleOM1aHTXvlkJKW5eW3OtmsNtt+acvSPjuIpjrsrGchoLKgvBaJ0+BPrFfwrK1qIm1z3v1DJUIfs+aitix6ZO5P1loFzxBdslU12rL0R9qneOypDruozep/WohMddhZwbNsedve3/3ud7GfFi1iZpW196+Ib/5cUJY+k6WiLVM2vX9Vyqf3LwX7uoq2DP5UT8rGzpuIfixE5gEdJS8DD43OzjeStoifzo6OGjd3SdiQDsfRwbSwxEuJjhcVCf/lBS9KddiQfJqxoooOOw0K1FUdti1bVodtExjY8qkOm+tPddip81QVHXbedZfRYeeVpX0sFNbTYafWIXk67KL7lx5fRoedZmOposPOa3Pq+FFPh52Wp/8zkPE8mSXTJ/Iyu2TdL4us51q2LM+8yHGmqCz3r57jTF75nnSc6XOEDVDXYGrIywLp1gOR+RjpeWmReL7xjW9EQoWEIXOIGjKQJMA3Dw1JGFUKUiwvuFxlHY52BWREf+fdgCxRI3qM7MahTxI2Iy4686OOOioufBYFqBfodMRFgLSZEgJUI4BRGInHxhuWZQn/MTBk2X87HO0C+jgmn0jdcpzhPWH2kKcacFRHnyRsTbGIbXLBBReUskZhikPHs/pGVABMDZlqInkjWUPMkrTlLcm0lg7NNJH9HIsaJW86Rme3U39NMUX6acaZFKlEw7VLukcCKiqbDl7o21SWKX2ReSZTUGuDy2Blr7so6E3aZsWjUNl6er/0upnGqyxtzkuImnW/bJsZdIvCDFh7eEAfsddtdbdZWXZs3fQLW7Zexpm0zay32D5SFL8jbTP3SG1OA2Ol4Lz2WrhmpGrWdaTLp53cR6RsJ+zGoU8Stkh75513jqFgMd+TfjoLWKxMnDixk2kikL6a2NqoSNBZSefFtzLOIHlA7losonPTsetlnEl1XdLBKtuNXXCzC0iUtV5yEK3KWrOrMhlneHntYql1pMnKOJNmX7HXTXvSjDNpzBY5pKgtKotKyS5A1Wsz9aZtRhddJuNM2mbrVJKVcYbFQZu5Ja/NqeOM6lMI4Kw218s4YwdB7qnKom/m/vJ8sxYdq7Q5K+MM+1VWmW/swivP0QaLcjQGfZawRdqoRDBJxPQwS23By03Mb1zneQFSpxulpiKuNpK0JC5IVWaAfFMOskM6kfckdVfJJmKvr2r2lbyyZTLO2LI2g0qZjDO86CovR6Qsx5msstyTnmhzmYwztmxXMs5ktTl1nKna5u70kTIZZ/LaXCbjzAMPPBAlbWVcogzPtigMgqM6+ryBJJI1hH3qqafOsw+JDakaW3MWJ1NzOQHJBIkOBxuy3BC1L81WgxSPFAK5QfCpJYXD0cpQv0ayxsqJwdAjVjYefZ6w6VQ49SAxEbDJgkw5JGlgH2FiiZudVwdkjJoBpx8kmTRbDXkfmUKiBvF0Yo52BP2cdwABxaNV9gz6tErETgXJSrP77rvHKIEQKnpFPqhCrrrqqhiatSi2L1NI9NSoOVgsQq+pBToZ2COxM21ECsHpRi7u6APRNaaOH3Zhx25znJX2UwP+orLAlpXjh7XDtscXlc3TYev4rLoE2k2brQ5bemm1sejcaZtt2ay6bNlUh51eJ88u77yp41G9+13keJR13fXabPtIUdm0zQqjYLPElH3OqeNReryti+eJ3l26cvo8JJ5GHgTYaRNCmfcmK2AU9xlLLNqStf+tt96KzzIv2JTSk+VJ+mmbu+I4k1VeMw2+s5B1L8rCCXsuVlpppehtSVwTzP1uu+22sPHGG8dOyoMfNGhQXX0cD5eHwUuJUw5EnJehhm91RBYrsVtN9ZFWX8mxRc4xVcrW02Hb44vK5jl+2ON56WxdVodtHWeyyma1o6tttsdn6bDLtjlLh110bls2dZwpc91FOuwqbc7SYZdtc5YOu+g5Q5B5wbMA7wjvBqpE3jsG7iznGIiee8W7kZWF/YUXXojnyXOs4ZqLHGey7peAw1E9x5m88u4408O49957o0fWd77znUg+qC1YQT/wwAOjpDBs2LAwZcqUGLSKaV89QAborOlkdE6klXRBEymEzkyH43yu03a0O6wHJGQGcSnHKu9CakrI4Cg1S0rY//rXv6KQkSfFtiv6PGEff/zxkbBlewqRYtGBRCAPRvTP/E8skXqxfhUnm+iDCn5DHUg3DAJahERqoCPSKZFcstKPORztAvo3ZI1AJD8AZq4s5jPDY1ZqLbAgdYQYpFVmBbyfixqVJMfjgUwdfQl9jrBlGy1yvf7662OiXjrFk08+GacyWIyQ6YYFRIEs8cQfqRdB0Jq9MaVCP0fnol4b6xgTQOWRJHKgJWw5X1AWpIMEU2ury0z3K2uMYHWmTF2LnF/Q7XK9OneafcWqhVJHEGYTSEsqm0pMRSolrsmWTaex9dqsrDFZ56rXZiQ922br6JG2OYVijahsGlOk6H6lbU51rfVUcKgqVBbY9QB+F7WZ/mbbbCVVrrEoWw33p2ybAX4I9HubOozzo3aQGSN1cr3az7UhhUPIkDzn+9Lc2a2y6fTF7DZ9jrBJX0anYJRXOFekZwgb9QejNpI1hGpBXGycZ9hXpL6gs6Ofg+hQjaC/o2PTKZWJBAlbGWeQJOjQ/CfHCv7j5bULHtZhJSvjjM4NkNztwEKnTzPO6MVIo/VxLdwDndtmjIH4Ud9oQUmLjtLJMciwT2VpA+dTeVz7VTYr44z0nVnXnZVxxrYZwibDT1ZZZZxRm9NFR46DHLLarIwzuu7UcYa6uC6V5TjbZmZlKpuVcYb7p7JavCvKOKM2a+GTuDZZfUQZZ9Tm1HEmbbPNhqSMMxpAUscZzkO5Mm3m/tGfEVbsICz9tKCFfmaeEjD0fBgQqGf27NnxOijbV+PN9znCZpGDjgOhEvqRbSKe0cHo0HQWpmap6R2jPJ6R1157bdhhhx0Kz4HkgDTAggSdTaSSlYlEC5CQKC8s10OnZNsODFUzztiy3ck4YxdDuxKtr0rGGdqUV7ZMtL68NlfNOGPbXDbjjJUyq2acyWtzmWh9tmx3Ms7YzEJVM84UtVlxdBicaTdl+I/nYZ8ldSMMcO+RrlNC5vqmT59eS+VXFF6hndHn7LB58DxwCJUOQkdBqkT65UNnQWqSu7AFmd8fe+yxwpgYcpfGeYb677vvvlqsbEkhkrDZL8kGqYXOnE4vHY5WB+TMwENfVxwdCN+CAQFiZ9bBbCg1p2MweuONNzqpNPsi+pyEzajOB7JklIa8rYSNRMIUN8u5hf9IYEAyg6222iqzfiQfyJlAOJIGJMEyCKSu1TKfUjJWBg0kZyt9OBytDvo0EjvCEX0+K68q7wt22Vn7eD8WX3zxqJ4qivvT7uiTrMDUm46D+uHggw8O3//+96MUgO6OTgHhQuiQLWSq6S8Eixv7T37yk6jTzgrLqqm3PCPZRn+ogE1I25CxVCDSS8opArUDHpccbxe/0owzRRlT6mWcsTrYRmac0UJUXsYZ6/jBwJZmnKG9eRln6mVMKco4w0DJc2hUxhnrOIPenmdqZ0Zpm7uacUaOVb2dcUaZf7qaccb+RvfM/df9oyx1WTVPmlmIPqR7YvvMBx98EMvbhda8rC/cW9IZkiGrtzPOwCOc3zPONAiQE4tydAqmanQgpGxJ2BAxhImKIpW0l1tuubDtttuGJ554Irqtp+AFRB2y4YYbxrJaNEr1uPxnJWzAsTxoFpKQNlIHi3bLOJOVNd0zzrR+xpn0/tk1AHTTDEKp41GeQ5R9rh9++GHsW6lBgD2e80H6POuvfe1rnSxT2iHjTJ/TYacgXdh1113X6T8cZsj8DrLyySGRX3bZZTX3cvtB+qUzs1JuTaOQWpBqNOqqE+kbiZ8XkJeZTlkmqYLD4fgImnHwQaXC+9OOliR9nrCRCrXgyAfiZPRndL3kkks6xYwQkG6JMXL77bfPsw+SfuaZZ2KH0YKiiJxRH+kZdQvn0jfHIAEiHWStkDscjnzwjvIO8S5rPYp3qR0X8PukSsROtyBRPkzNpcNWLN8slYhNfrDffvuFNddcs5MKAImZslKzSAeGVQpmhEyvsSOF9NNFR8iefUzlrF4TnRfXpOkt+xR3OAupAwb6cgXvp2zRgJCWRU2hsnJYyANttw4tvDT2uutZ19ipKxKTLcs0Mm+KmXXdvMS6bn4XmYEVtRkdbJEDStpm+pC97qJAP5SzZbm3tqzV5+v4outmGm7bXJRlJy1LH1NZa7+dVzbNsmOvuyhDetpm+pQtm2bZKbrujo6OKPRA1HhMql7uA+9tO3oP92nCppNABBAaki4dD4J96KGHorv65MmTo8SdFeAFtQf22KQYg7htJ6Lj07HQlUOOcorRqM//dDCZ9QGOkdUK0zo6Gy8di1ostHA+SQwMBDg2FGVfscTKC6iyfHN9WkCql3EGVY6VVCCRoowzafaVVNKpl3FG+j3aYsvyDOplnLEedras2szspUzGGdtmvjm+KOOMzb7C/bDn5hrTjDOW0GyWHe6JLUsfqZdxxtZly6Irp+/wKZNxhn22zfSLoowzxMrJa7N9zvxvFx113TKbTdtMIhCbiSldTH7TZNmhrKyw7CDA9XLvnLDbEHQGFlOQitWhzzvvvPCrX/0qSijqeCkgEBYdb7rppqjL1kII9SGdEEvERjBT9g2IEYmcb45FZy0JGymcffzHoMG1rLzyynEbYrMr1lWzr9iyvMRVMs7klS2TccZ6PkKQVTPO9ESby2ScyStbJuMM7VJ5flfJOEPfyWtzmYwztiykWyXjTF6by2ScyWtzumhbtc0gzeazrNnmnvL+cV8YVBiI88K1tgP6PGHLfOn555+PDx/38z333LMWP7jowdNJMAskJCspxjiWTkPHpsMj1WBahJTN1JjVa6b11oFGRIkkITUAxyJZrbrqqrEeyktScjgc/wZCADNTSJuZJ7OoouTDrY4+T9hItEhLSJmoQXj4EHaW9JIFzPy+9a1vhTvuuCNssMEG8T9UHkhiX7300vDfSy0Vpu+3X6yLzgWZRzfeyy4LnyYo1AEHdIqVrVx6DCKQNiSOZOSE7XBkA4kaIQf1JdJ6O1tY9XnCvuKKK6Kk/PDDD8cofaQFg6zLTqkoe9BBB0V9NmoQLUBC2v0WXDAsOWFCnBL+evvta/v6n3BCCFOnhjd2261mfJ9+s/jINJEpHteCbbcWZVBF2MWsrIwzRdv1Ms7Uy+wiZOmw7X5enry6snTYqcOP3U6vKw2rWVQ23UYnzT2USqRK3VkZZ4qus0zGmSptTjPOWBQ9q6yMM2Wfc1bGmbJtpp8ya7Q67O485z8XXKeyNqlPMaPlXqcLqHLa4p7kgXdC0TazkF6nBWtGyiSfhaJF2broaBO8+eab9OT4XRYvvPBCxxprrNHxxBNPdHz/+9/vuPPOOzveeeedLp1/6tSpHXvssUes037++rOf8Yp1/HPIkLjdMXJk3OZbx+hair6feeaZjldeeaXjT3/6U8esWbNq/9tjurL96quvdrz77ru5+4vKcq//8Y9/lD6X/T179uyOl19+ucvX3Z02//nPf+54//33u1T366+/3vHPf/6zS9fJc/vjH//Y5et+8cUXu1yW886cObPUdabbtJd2lz2X/c195n7Pj+f88ssvx35mMWPGjI7nnnsuvk+PP/54Rx7o12+88Ubu/qxzC7xPvFeN5CqhT0vYkoynTZsW1l577bDiiit2OdPzWmutFS1GUKvYRaU522wTXp8+PXxj0qSw5GmnMbyG6UOGhAHDhrGCUos3zYjNyJ+OykgJ/I8jDinLPDONw1EdSL2sKTGTZFaM+qQVVSeVHWfuueeesMUWW0S9KiRzzTXXzLOIN3jw4OhtxM3BBRw1Q1lcfvnlsd684EqNAp6KPDCmxST6hLAVVa8roBOQyPfMM8/sNG1lOvaPffYJcxZaKPSfNSt+PzFwYG3RERMmfjO9eu655zo52/ANQVM395MpXD07VYfDMa8HJO8O7xC8hboizU/ZKqgsYUMYSKJkYMmKpTF06NC4AHfxxRdHU7dbbrkl2ilzowYOHFhYNyu9kB7k2ZNAx4U1COc68cQTY9JdG0u4q2ABkkhiBH7CfV1Y6qKLIlnPXnDBsMCsWWHF664LS44fX9uv8yKZYz+LeR96Q3SG6NL4zaIo95OOB5kXSQfKoFIm60kKBiwGLukr05x51okkrYfzoHtX2TTWROqAYsvLtlnXnaV3LELaZqsbz2qzXaNI25w6+BSdW1nBVdamsSrTZp6vrjud3RWVtVljutJm3uO8Niu4VFGbbdnUo9CWtbbyqtuWTaNS1nvObyZtTvujPRfCIxmdsMyyTlecHyFI9u9tTdibbrpp/OTh/vvvjxHtiJIF9t577yh1sqhXRNh0th133DEce+yxUa3QEzdTD3f06NEx4S6u59ttt10kw6yszFVBJ2DA0gIk5AtZLzN1anh+p53C/RtsEFa98caoHnnpzTfDm4MH19oJCWtRSs48LHpAzHzoqEjgLKzg+m7Tl6VOJGkWaupLM87o5U2j9XEcljJyKrFllXFGZJouOrKAyT6VTTORcN0qq0VHPRMtpqos12fLKuNM2Tbbsso4ozanjjO81GTZyWqzMs7Y1FbWcYY2UE5l0yw7hAtV2ayMM5CKynKcLZuVccZG66MuK2TY61bGGbU5dZxJ28y1pBlndN1ZGWfo22XarGh9WiRXFLu8NisTk70Hwocffhjfj7w2M3DSH9Vm5WeVF6V1iiry5GxmNFyHjas2wZSQwJGq77rrrmjjPGHChMJy2DLjzIBJHYRdD0gEViqoFwGLB42lxaWXXhq/N9tss9gpIW4k27x091Wx/PLLh7322itceOGF4aSPfzyS9cu77Rae2XLLsOA774QvnH56mP75z4f/mTQJl8Xw4qBBnRxneBFwRMHUUBHX6NzKAsLshv8xJSyK1mdX9BmQuhqtj2fSmxln7HVXzTiT1+aqGWdoT29mnMlrc5lofbaszbJTNeOMzbLT6Iwz9v4hLCCc5bW5XrS+RRddtFNZOzNW37M5MjmewVyhCRjkGKhaFQ0nbNy5kaoZ2ehQPOizzz47ZmvJA1lZzj333PD444+XPs+oUaOiNF4PuNDykEiqi/cgMarpiCTURR3SSLIWSHJw1VVXhTc/+CCS9R933jmseMEF4f1Zs8Lzyy4bXl599bDsFluEZV97LUoQS06ZEvoTwObww2sStpLhIsHxkvMfC5sslmTFN3E4HPMCIQDBjIECIm/15L09QtgkukXKhgxZpNx///3j6E6M6BQQE4GUIPUqUeqOOOKIqH4QILQsDyfIDtJDhfCDH/wgkh0SFNejAEyNBnUyY/jZIYeEEw44IDBB6+jfPyx/2WXhyVmzwgI/+lHoN2xY+PRqq4UVDzwwDJg0KfQ78MDwX8suW5OwldOR62Qb8mZqjsTh2WgcvYYRI8JizGYPO2zefccdhy4zHtPM+NLcdIBK8tvKaOibz1TqyCOPjGZyZGQBTN2RnMeOHZtJ2NxIiAjLE0F6TYgJvW0WqTJKlhkpkfAJhcqCIKFNbTaUngTSMIunWoBEygbfmjr1Ixf0/fYLL+66a1j2wgujmd+TAweG/3zxxU4SNlM/puDo+FAZMDVlkFGwf6a3HEcUwLzsIel26viR6rB1bFcyzrAPKSYv+4p1/EgzzihEQFHGGXSrWphLddipU4ktmzp+dDfjjNVhy/HI6tfzsq+kwZ94zqnjUXq/ijLO2DWAtCz6XN6PrmSc4TjuT1SNvPFGFCgQIKYffHDt/i0yenT47JQpse/OmGvVVCbjTJbjkT2+6Ll+mKwBpGXpf7zfUsmha+dY6uObNRRUilq0zMsYw7WiF0cAtPrvFHnl7f1r6owzdL4szyJesrzVX0KJorawOProo2OjJk2a1O24AGlGjt4E8UXWXXfd8KMf/SgS2ZyjjgrTP/WpsNKkSWHOr38dLUdeRX00cWL40ksvddJh84Io+JR0dNIR8wKgu1NKLvZ7xpnWyDiTpcNu6owzEyeGdxdbLHzhpJNCIFzrsGHhM2ecET41ZQoLT9GfQGGwquiwizLO5D3XD+fqsPMyzmTpsLnXun/cr6L3hHvKAMw5UZ1y75ot40xlwrbhNbUSiwTNSw/hQFBka1HHxMaZBbjxxoxtl112iY1BD80DQPK10IuV/t9qQILD8gVd+b777hv/+/PAgWG9006rmfnxAmDBwAPm/mUBCQNpgU7OvVF4SgY7pKxWn+Y5mhvvHXJIJLHFhg8P4fjjw6dmzgwfDh8eFsT5q03wxtyY8QzkLEpa08FmQmXCJvrc+uuvX9uWHhlTvqlTp0bHF/TLEBWkAmkjaYqwNJVoVbOaqsAEkgVOpnrcC9lk40CDTfa/Dj88/G777eN0H8nAqkQwQdK0S05IqI/oWArPysdaizgcPYH3EcLGjUPHEToWXjjMPvLItghE9P5cD0hmSvXyPzYDKt9z7KuLHC+Y0p5//vmFdWDqVwSIv12gBUicdC5ZfvmamR867U+fempY6ZJLwsc/8Ynw3sEHR8sayJcRHila5kfUwVQcKYBBED0201sSAUPiNpIf07o0uIwy1gDqqOLlJacSQL1WfwiK+gL6S65b5VMnnCLHDuk5Vbaq3o9BT2Wpp2gWkgb6sm1mSm8dUuoFBZPO25Yve7/SNtfzak2vhT5j21yUZSctK0caTenT61x0zJhI1mHhhUO/mTPDAieeGMJcKy2eq73uNMtOUZu5t7Zs6mlc1EfSNmuhvmxZZqcQNO9dq1iOtMMg2fRgAfLojo7wP4aswVNbbRX1ZMuceWZ46YMPwnWbbBL1bnQ0OiIvERI226ii6FzsR3WClA0pQdZaqGGbRRpI1eoqITtJDqiuIH1l/KiXcUbnBRxjnRy06Gh1cmn2FVs+K+OMXdugbhGzbTNAb1kv44xV1dk2Q9a81CzElck4Y8sys7FOJVkZZ6hPZSGrvDZnLZpRnxYduRe2LPr9NONMUWYhW5apPbM1pf2ql3HGthnSo6yue9GxY8OAM8/8aIFx8OBohjpg5MgwnaxIgwfHQSmvzco4Y0lc2ZQA12/LIpykGWcs3kyy7NjrZoDifaBPZy3apm3m/arn+dtscMLuJXxn1VXDaX/+c/jSttsGa6ci8v7gX/+KaY2U/cYuNvLNS47KBIJncYWOSefmWElxcjzhxUwXQ6xUDXlVyTiTV7ZMxhkGDpW3ZctmnLHnthlUQL3sK7YsZF0l40xem8tknFHc87Rs2YwzeW0uk3Emr81lMs5kthnTvTPPDO8dcUQYcOKJHy0wTpwYkGmxHon3YdiweC+z2lwm44ySfnQl4wywZa0nZLromFWe62J9iOuH8Lsa/K234ITdS/jMqaeGxVZdNS7AWn2+SBtJYMG5buOoOiR5SsLGYQYyttlqIOjHHnssmj5iZw4JIZG0yvTO0QKYPTu8e/jh4QN02OZvJOtI1gVJmVsBCy+8cLS0QfhAsmc21syOaU7YvYjdd9+90wKkhVQhSM7YrjN1TTPRICGh47P/Q96kEmM/kgIdrllXuB0tiBEjwnu4pmftayMrkU+amSvvlI0P00xwwu5lkNUG4ibkLASdmvJhtockjX4NArY6yjxIr40FCWWfffbZ+D9SOtPiNJCW1QsyXbWOM2kmjaLsIOgP0U2WzThjfyvs5fzIOIOaweqwq2RfQRJDtVE244z9TTkIwepgeWZl26zZVlfanOqw6z1ne130H56lzZpeJeMMfdAuvlZtc9k2grSPWL+Qem0WEIrw0F5ppZVyHWeKMs7QVu5ZT2ScccLuZUCs2E+jGvnqV7+aaXXAS0l0QwJT8eAh5LxUYvYlVuQyXkr0ypADViQKJylYXWiWDhtof6o3tdtZOuz0eK4tq64sHXbRudLrKgoSVG87S4ddts1ZOuyi60wdP1IddpU2V2ljup2lwy5bd1bW9LLXmTrOVG1zd57zAhk67KI201e1SItXNsJPPceZLC/snnScaW6jwzYFsVWuv/763BEYiRWnIaQTBauB6Om49htzJL4VwIrj2EdnoQ5+I7Gnq+D1VsXT+MVdLVuvripl65XvTtl61+ltbv82v/XWWzHkLAMa700qwJS5lt6AE/Z8AFIvzkUkecgDi4xMY5m2s7hoFxv1TexxJHCmZspcwwf1hsypWslkydFmGDHiI3vtLGB90gRBo2bOzbaOigyhp5kXHIGrROYTSJyAVyixv9MMO5AsnlfE1sYpAVK2MYNtrAlUCpC1pmZ8I7kzZWcqC4HbqX89ApdOWjra1PGjCKgKbNmqOfN4aVS2bNZ6q3e0euUyun+BNtrrTh0/isB5bNmqC1VIdipb1cuOdQ7b5nrZWrIye3elzah2bNlcq6QFFggLDh8ePokD0Nixtb8/hsfkGWdEU8FZFdUD/0raXEUgSdvMGhH9DNVFmimoWeGEPR+xzz77REl7hRVW6DSy04lQZeBQwAINjhnaj2TNNnpqSIqXVA4VHEsHZrEFfSVAymZbUdswAbS2plkZZ7A00ctvHVJYLEEayVt0RGdOOZWVA5DKkzgib9GRF5HFKS3CpplI0owzCjVro7pZnWFWxhkBh5004wx6eF03A2SaccYSrI02J2+5Mm1OFx25BoVvyLpu2oTtvbZ1HYrWxz1BLZZVVhlnhKyMM3ltphxkJmRlnOHe1W3zoEHhk8TnGDcuTGehdvDgSNZfOOOMaCqId+8Ccwf5vIwz6aLtX5M22+tWxhmBd0XR+rLaLKeaqsLB/IQT9nwEkjIJi0855ZRwzDHHdOo4vCCQA4Sx8sorx33W8QM1CS+OFu1SCRsikFSO5xpu7hAeLwdeg82accYu5lXNOGPLQjJdzThj29zTGWcgn7w2l4nWl9fmqhlnbJsbmnFm7Njw5iKLhAHjxoUBp58e3dsh64+NGlVzIKuacWZATpvrRetL62Yf90Qpz+h/bRdLxNE4qCOSCec3v/lNLYa4QOfhhVPMZeJeQzq8KEhnSMdZEjZmfaRAE8nKNpvO3KrZoh2ti7eGDAmfmjy5FjiK6H+9E5W+PhgAlJAXSZ2BqBH5XXsKTtjzGXSWgw8+OGbdQZKWKkNAWoCc+ay++uqRmCVh09myJGykcqaOSBhIhkhMTP8gbdxvfSHS0Zv4JPlLTeCoxdBnjxoVmglLLLFEFI4QgphRNKvjTHPL/30E2GOffPLJ4ZxzzonTUPS49kOMEabOjP5M0dHFiXT5lipF3xA69bCtTkdnZDps1S4QO/pGGyHN6pWlm8xDVeJPdYV2u5F1ZaGo/p7UYRbVXS/wUL02NrLuqvvLlsVK5FMsMo4ciX4pLjR+jGQIWIn0cJv7VewjzGgRmBBqyPxeZRG3t+ASdpMASXi11VaLqdQGDRqUeQyZef7whz9EQmbxj8VHqUQA39q2C0EsvqD3Q9JGbwohs/ioeNt0ZOIpMBigTkFyR69Neeqy0fe6kyKM33oJFK1PketYFOR6qqQIAzbFVV66LPSc6Hu1aJaVIiytq1EpwmyEwTRFWFa0w/R+2UUze51ZnqK2LG2ln0ifm5UiLK/NsqbQQJ4uOmZFO8xqc4zqN2lS+NOee4ZZ9OkXXwxv/ehH4XM4lQwfHutjITItm/dcP8zwFE3ToqGLVhpAeTpm3b+0rP7nWdI2nifHW+/OsinCdP+aPkWYo+tAlbH99ttH9Yg107OgA6CHJtATi1GQnFWF2G/FGeGbTkcnZuERKQLS/+Y3vxlfdqQJOjT18SKS/1IOOJTHgsVThPXhFGElFx0z27zEEjEzTf+99grL2hRhJ5wQwhe/GAaQKiwxVe3JFGFFbabvIUCwX2s+DEgtnyLM0XPghfj5z38eM/SQPi3VodEBITQ6E2nZ6PyQkBYdJdlIkpAEwMutMJIQDhIAxMF+OiQvPqQEeUhCQZLhhaxih+1wdMKIEWE2/Weuu3czBo6aNWtWbb0Hsvbwqo7S0Oi/zTbbhPPOO2+eMKyCplssQlIGySNLwtY3kjjEy8iOZIQ+HCkbKVHZxJ988smoS1d2FixXiAKItC+VB3VUIXBeBqZ/tnxZMPDYsmkmknqgzSpLPVVW/jWl1TVXccJJ21zFIYWB1ZbNm1LnASnRtrlKmF3bZi1SlwVtnF9tftuUpf3p7K4IihuCJFzGFb0Z4ITdZIBwd9hhhyhpQ6KEWk1B50K9AYlde+21UUJgqisJG9KV7howPWM6rCk5xE3n5liIDUmdbzowBM550WGz8MI5IHleCrKfoDbRFBM9umy79fIhxYscITv0inJ0gMzSjDN2gZPrkA5bkQZVlplFUcYZ2mwXnNRmwEtMXXkZZziXzUSiNGwCJJKXcUbtKNPmVIetdQbdP+6FLQuRFGWckXrGtlnTcFQhnMtmnLFrAEVt5vnSH6zjkdVhU5b1lLw2084044wGa7XZZpyxZZkJ2owzaYTCGTNmdMrYQ90qKysPQdmXpMNO20x76CNWzdbsaJ0r7WOkTab13XbbLTrUZOnRIGiIhw5PVD8rYafZaujwSM28KJAvhI00DdlCXJAzpEbHp/OqvOKScDxqEnSHkBzkyfGUpUxRxhmkPO1XQKqyGWcgDlu3zWSituaVBbasPXeZjDO2LO2vknEmr81lMs5AjPbcNmtMmYwztiwDYJWMM3ltzorWV7bNZTPO5LW5TMaZz+Q85zIZZxikGAjRf9Mnmt3r0Qm7SUEs3uOOOy7qs0nimyUFQLR0bqTSG2+8Mf6GnNMQrHRSKyHxP6QL4Sq2M+XQiyM12fLs+8EPfhCJGsmQl0OWIvUWZByOZsdiiy1Wi3CJuSzvRV4M7GaAE3YTY4sttohqh7POOivst99+mccgOUslQpztNECUvrEmQDJMs9VY1/RUMgd0YKaZihrIuSB3/mNfmkXd4WhF8A4ggDBrRfBhxtCMjjNO2E2OIUOGRF0ybulbbrll5jHos2UvjURMp8syN+oK6LTUD1FrYQYpW6ZyWpSEuGXT3RsZZ7qTiYT7w5RfKpEqddNWG/yp3nXa36kde29mnEHPznqEVCJVMs7QVi1Ol71OgQVI+sr8yDjz6quv1jLO0M8QMqyAUZQxhnUc1Dh5s8iijDOsFdC/PONMH8UhhxwS04qhR15uueVyifXOO++MOmU6jF10LPqmnKL15R0HUJ/YOrVwhO5PAwU6QLY940x+xhlrx161zZ5xJnQp4wz/MVPl3eA/2XFnnVegf5Sxw+7tjDNO2C0AFgiPP/74cNBBB4Wjjz46N8g6DgOoLdDB0TmRJOUwk6o66LQQD4uH1IeOHHK1qhBssanTOuFIvfL888/HepFEIC+5zadeXK2eiaRq2Xp1VSlbr7y3OZQqi6TNYMPAYXOBdjemzvyIyeOE3SIgpgjqkdGjR8fFyKzkABAwUsMTTzwRnnnmmSgVsYiI6iGVuBUvGYkDqRG9nfTY7Ne0LUtaR4KgTrmT8yLwUjAIdMft1uFoNF577bXYxyXk8E6gpmlG/XQZOGG3CDT1Qm92+umnhwMOOCDzOFQVTPWZgtJRmYZDqKmEjRRuzfqQpJHKZZvNbzq2ctzZskytIXQGEaRspG0kdQYLysqWuitZY2wskSpAurdlqwTuoS32uqvoGDmPLVvVprc794vBtKtt5tl2tc3og5ulzR0FUq7i5qSmi5B4nrqi2eGE3WKkTRhWFvpuuOGGeeJnC5CnUmYpwBIvFdIxBI19LqoSiJ3OzzadmJeBYyBzyiNJW9019aAL5PcGG2wQbrnllqjjgyggABZ1lIEGdQx6PNQlcqLAuzJv0ZHzUd46b9hMJNRnpaLUiYRtLGYEOQ8B6rEveZpxhvtJO5SVhuu2GWesLj91nFEALpWVI1FWmyFF6zjDNSnkLWCAtWW5Ts161EYb/InrSu2urbOLXfRiBmSDP3Ecsy9dt71fDH5FGWd4bnKuAVxjXptTxxnuO7M5tZnrsWU5LwJGXsaZv/zlL7lt5vrswENZVHWcS/FFeDe4r80Yia9HCPuee+4JY8aMiR5DdNZp06aFrbbaqrafTnj44YeHa665Jt5AFpWQBvPcrMHVV18dHUW48dxwwokqRrRjXtIePnx42HPPPaMKguBMKSAyXhBIkP28FJIyIFA6K0SZ5TiDRC1pXuoNlWUBh5dTL8yDDz4YdYNEF+SFhhB0XqRw6qM/lA3+xMtlPQytE0SZ4E+2LNfe1YwztmyjM86kwbNoU56zS5ngT3ltZiCoknHGluU5cq8aknEmcZyhfczM8rLGpNeVFfzpczltzgr+RB9EEGCQoD20n/5urXzamrAZVVdcccWwxx57xJgXKYYOHRruuOOOmBGczoYUhg0xnWXgwIGZdXIDjzrqqGhHjNRz/fXXR6sIOsXGG2/ctZa1MRjQSCvGPTryyCM7dX4LXlbZTRNOVZ6OkDUDI/t5sXmBUGvwXB955JEoVTIwQyxII2w/8MADYZVVVokmhrxApDZjH4MHnpaSwPhef/31oyRO+a6qOByORmABk8RDHo3MxOifze7V2BDC3nTTTeMnD/fff3/Yddddw3rrrRe3995773DmmWeGhx9+OJewdazA4toFF1wQ7rvvPifsAk9Ikh4w0LEImbWIov+QMCBjxflQolz2IzkhtSB90Lkhbzoykq9+c4xMotBZI00eeuihsa4RI0ZESY99DMpILlroaaUYDY6+49H40ksv1dR4rYaGZ5xZc801w3XXXVeT7LANRnrbaKONSpWnzO233x4lwnXWWSf3OEWfs5++Bu4pA+L5558fpQgIM81WwwczPKaJECwfZjRMK/kPKRji1rTy61//epx6fuMb34jflOdbhM1xHI+kggMELwCzLjkkcB1I2kjyFqhJcP0VkPJtBL4ypmD2mDRZanekpSqJV9Pz1MvsYuuud2y9c82vNvdm3UVt7KjYR7LK0PeZIbJeg0q3J9CTknvDRaDJkydHElEgIR7A2WefXUi+gOk6Uh5EDDGcdtppMYZFHogXfeyxx4a+ju9///tRXcF9J2NNXmdBhwexplKvSFMLVNheAzqzosihn+Q333R0cOutt0YJhfrQC6L+YlsZZ1h44niizaE6QTXCb0wO0TOi14TspQctk3FGfQMocl+VjDMMMnkZZ9K6qmSckeNR1rmVBchG69PglmbsKZNxRtfZiIwzeW1OM6Z0JeOM2kyfsIuOCFapp2hWtpqijDMfGm/Fehln7P3T81Ssd9qkBcsU6f1r24wzEAeLUUjZSG/oQvfff/8o/W244Ya55XiZCD7EC4uEjS4cyTBVlwhHHHFEPEagI1hvqr4CpAX02AyS3MM8cyWRQlGOxhS85NSXVRaSRpeul4vfqF44HkLmRZCukAw5EBWDONeIuoUXidV7ZUzxjDNtmHEmY9E2Zpwh00yy7tLTGWfmzJkT+ye/v/e978Vrz4r8J3D/2j7jDBcKeWA5IpMz4jlDxOQqLCJsbqQaj34WCQ0pOo+wueFVArS3M7hvEydOjCnGSP2VqiN6AhCBJB9eQAZZiI0FSF4YpA86JtKGSIKXCXJHEqK8Z7Nx9AZmzF1XQQ2oGOmtioYqspjeKdiKBSNdVbtHjvcXujwYGFmAZCGyN7wNkXwUfF8JELAiQdJGIkL3zUInEsqjjz4ayVrhWVnTsDbTIEv3iACAmoSPVDFlwfEqWzVbDdN4W7ZK30UKtNddxSElbXPV/t8sba4SwZHz2LJVFwLfM2VTFQT3gwVG7iNCTTuEA64sYTNttXof9JJI0CjzeUnXXXfdaEGgqd/dd98dLrzwwjB+/PhamV122SVOF5CgAd+ko+JF5+b+5je/CRdddFH06HOUBwl099lnnxh3BP2+1av2JJia8/x5QXjeSNYQM8+Slwg1B1I1v9EfMqCwYCkdLNssSDLlthln0H2L2HnZbJS31HFGscAF9KyadnMc0r8yzqSOM5CqzUSCNKbpv1KV5WWcgZxsxhnugb1uiERlU8cZ2shgZzPO2LLc06KMM7THEqttM8+Ee20zzlgddtpmjrNt5hnmZZyhzTbjDPXmtTl1nKGNNuOM7p/K8p2XcaajoyNegx0QbFkl9ZDOmj7F/YBrenKRtakJG2kJO1tBemRM+aZOnRouv/zyqF/ecccd44OCtAnCbx1neAj2BiKdYauN2RlEjz02dtxM8R3lIV0fpHfSSSfFQFG9ZVqnzDQQ0Nprrx0lJaQam4HdWqMoPrccXtAFW7UYYBszQiHVOebpYIW8smUyztiyEFCVjDPcC5Wnb+c5zmSVlelklmNIkZ6+XpvLZJzJa3OZjDNKW5e2uUzGGfqoPbfNdpO2sV+/fqXbLFNTdNeUa7V0YFmofPXolIvMa5CmMDMrwl133dVpG4mQj6P74IXeeuutY6dHr43HaG85CPDSQjAMvEh/xPDmBZGViSRJpD1ID4sRbPMlMVWdxjsc9cAAxQDJIMJshVkBEnkrOs2A1h5uHLmkjdoJsrziiivCYYcdlnkc4QB++MMfRqKFQNNY2wzMqLmqgOM1hUbNxRQY9YjMAq2EjfSF9MN5kMDyAsI7HN3Fxz/+8dj3mC0ghbfq4qMTdpsCCWKttdaKaqpx48aFH//4x/Mcg2S77bbb1jr0qaee2mnqin6wK5IIJC0TPaQaLH4YPBQsCEDSMsGCzJGEkLw5H4MHukh0o/b80uGCNLtNum2PTbdlR5xmnMmrG3tebSvjDKqfrLqL6pIOO816knedWXVZVGmzdNhpxpm8Ntt9DMD8ls46LVtUF6oxZlt2MbFqm/OeRb26lHFGtvsCz+/ee++NfTSvf0Ps3Ku8/I7KppRVXnbYeQvl3fGwdMJuU0jXydoCtvHEdEm9TcnKzoeOe+2110Y76UZAWbB/+9vfxoVCOawAmfxpUZFzKlobBI5umMUypH5rpy2S1zaDQt6+etu8iFaHLUcU7be/07JZOuz0XHl1yY7Y6rDrXXfZ66q3LX2uCDttc1HZLB12ei1518ksiudqBYEqbe7Oc+7Xr988WdMhSwYvPHoZwFI7doE+W2SHzXnSa+sNO+z2WDp15JI2TgbYxpMZBgmal0/Bn/hAInTMn/zkJ3GbjigJQJIg2/xfNRedbLA322yzWB4bcTo4ZMf0lJeJa1S8bqRW9NgsIkEuvGi8dPoA/S7aV2bbfvRC5+0v2lf1XFXL9labq7ah1doMEASQ0OlfqO4YxMpec9U+U+YedAUuYbc5IEQ+SNmoR1jchRwJqkWnQ8qEWJH8+IZQieOCXTeqA6QqpAW+kQwUirUMsIhAUsbuGon2sccei5I0Lw3/KzGsppYQNmTO/0gnea6/DkcV0G9ZK2HWl3rSthqcsPsIcAfHRn6nnXaKJpPYuKPXxtkFAidsKuaakOTKK68cp6XowCFtFiZvuummuIgIeVeRtCFiWYegw0bK5nx80GtDzEw7UY2wn+tA4q+aY5BrsjrDKkGWmHEwdVd5G5+jHjiPLZvqS+uB2YvKVpW8utNmZk9dbbOc2rraZlu2aptnmvtVr82ch9AIitTXDrbYTth9BLwYkKPspCHvCRMmRJ0yjgp8HnrooZpzCi8w5Ix0QnhcdLcQK9u8JFih4MlYBbw41Ak4Hwt/1MF/1M/gwGyA/1HdQPQ4P7BohUqHgcRmIqFNemF5Ma2unPIiA67ZBpXiPGxLn0tZZgNyrFF4WBGETdyaFfwJApGuk3psBhVmF0LqOMPsgtmEFrbSjDNIhYp5oTZb/TMLurbNaZYdayaZOs5wHM8+r81pxhnITm3kmukf2mbGlddm6uJZyHGG+067VJZnkGYW4h5q286yZs+eHfunXQhMs+xY71AWuzHhIyhaO5A1cMLuI4C8ll9++dqiGZ0ZZyX027wAO+ywQ5TCCdTEgoySG/DykLWdl0Keq4qmeNVVV0UHqdQcsOga5K2Gc5QyznAeLBA0ZZXZFWRoTQuZDRQFf7KLppBoVzPO2LJdyTjDAFQ24wz6VBv8yTqdlAn+lNfmqhlnbFmIHUJtVMaZNPgTv+2irXUOSq8rDf60yCKL5LaZ/pIGf+L+MgjQbn5XnQ00G5yw2xQQHaSMekFZoiUd4vaPazEv5LPPPhudoSBpyBLC4FikIF4ujodAKYtExwuECzwkiq4b1Qq23j/96U87eZwVgRdY0iESExInLzEvHxIfUpVstNG1I+HmZdVxOIpAX0YoYFBgVofErQzqrQgn7DYFRIvUh+RDOjdlukbSIIY2EjXTZLmRI/UphnkRkLbtYibbTNVxgyfwVJFDQuqIA+FD8kiBDBZMl5Gg+A+CRn3AoCHJyuHoKhAOkLzpU63sONMeih1HJiBpzPVI2HvJJZfE6TVONEiw3/3ud6PTDP+j0oDcu2JuRBlUDT/72c/Cz3/+8+huTv1ZH3SfdhvLFNm6Kms7A4qm7cwAkMSZitvFpTSTuaLcFaFocao7Zlb1ssikdVdZGEyP7851puWL6qp6jUXnyaq7J59FvftH3BqEE2Z20t+3ElzCblOgc0SXil4PkiamCJIs+TJZ6IOkUUNIt8eUURmlq0D6RSQYBgYCfREpsIzpHy8Qqg+8ziBrpGykabmxs/AFoUP06FE5Bh0yH6RzpHDOgxSO2iQv64syzuRlTLGLeT2RcUb1diXjDIOuSCxddFRMlq5mnMlrcyMyzqjevIwz1lM0LZtel71/f+9mxhnVoWvr8xlnHM0DYlPj3UiqNTogERNJIoGJ3s033xztotFdo6ZIM6ZUBaoRPnRwbL1JzltGjSGykiMN0jQvAvbgEAX1aeEN8mKxkg4vVQr6SSxJ0kUv1Qk844xnnOmYmziD82OeqqxIrZZxxlUibQwIisVAXloy3Z9yyikxddsWW2wRpVl02Y2OkEfGGc5FjPOy9tpcHy8VoXvvu+++OF1lgQidNp0eCRvVCNfKsUhGMmfjBeQlbhezLUfj8c7cGP6QP0JMWcevZoRL2G0MOijEhkUIJnEsNCIRImkpxRqdubs6S4sVVlghvhRIUCStIJlFPTJlP1IHi6KYFcrMSxIpBI1kDTFj+QKJI/UhmT7zzDNRxWPthgFlNWBkBQAqglz3VbbK/UHyldu/tstC7v8qWyVzi67VXneVhdpmaXMVB56sNluwzeDPrIKZSKub9AEn7DYHZkxYf2AiB7DFto4JSBsQpfR+jQBTSRYgIV5CuA4bNqwUAXANqGq4Zo7HoYXrYyrL1JapJi8gxC3HGfahq5TNNsdQDj2i2iS9uBaZUh0sx9rsK+h7peKAfCir+CqpDlvBhKQuYBbA9UiKY2qsey39qSVkm3GGbbUZcA1sC9ZZiA8LtZYcuTcqq0w+eRln0jYreYjarHycWY4ztJn+pDbTfyivc1tnljTjjNqs+8e9sG3mmdmMM1Yf3jG3zXYgY+Zl28xsTAICgzuCA44z7UDWwAm7zYF0gZpifmDw4MFRv3z11VfHqICQRh54GXmRV1999XjNciVGvw5B8A0JMOBIp8k35SSNQ8AQErp0le1qxpm8smUyzkA6Kq/MO1k67KyyXH/eua0+V9upDjWvbJmMM3lly2ScgTSz2lwm4wzXlHfuMhlnvpRTFpLGKoTBhGfC71ZXnTlhO3oMSGGbbLJJ1EujO19nnXUKEyIovCoEgbTIx1oiAJGGVv5l1YKURuwTXn6ksO7EHHa0DxZddNE4yEnqZ6DW4nMrwgnb0WNA0kW9sd1220Wbb/TN22yzTZR08sAUl8VHHHogZwieqTsvm8yoOEZmYXwz5Ybs+UaCQrddJM07+h6WWGKJuGCNSgqBIM+Co9nhhO3oUUgCJinwlClTols8U+SRI0dmZnVHH4qpITpUXjL0qLxomuYqoS/7kJzsFJhpL9I1JM85JJ3zH/VpG8mfeq1KBN2n9tvf6Tb6ZnmNZu0vqguViBLCCgwseWWz6rIqjaJjs8pyfptxpmyblXFG9sNp2aI2oxKBIO0aRpXrZr2h6Ni/mf3pdWnQzso4Q3INFtzTGZzANSucQx7SaxHoWzJfzIINUFUVTtiOXpO2yX4DWFgkNjd24Sl4meQEg0qEF1JB7CVhW2cK+x9EzcsCiWuRjJeWhUBULYqFzEJXmnEGAtZ+pTcT7D7KpDpsuz/dtr8hTD722KJzFdVVbzttkxyTLOHbcxfVRZlUh1103XYf5ETZstddVFfWsel+u80iK/b6Vm8NidKnWIjn2vLiY0Py9eyw02sRlIotr253nHG0BDDZA0jHd9xxR6bjAkTDi0KAKUKqKpWTFupSBwstOmofrvGoYSB9JENIHMlbi5KAb30EXrB0f94+CDtvf7ptfythhD226FxVrqvets5rCTvvOrPOy7V35Tr1PLt63fXKLlziOYqwkZr5QOKYu9L/8iTsrD6SIr0WOygUlbXPoCqcsB29DogW++yjjjpqHtUIkg3SL2oMLCqQnNFZo8dGN802Uo+m6U8//XQnSZupKPpJpB+sIlCNUB/TV0ffxLsm7jg+At2NyTI/4YTtmC9AGv7Rj34U3diRgMh+QzYakTbTRr6xnUZKw8IEEpZpG9KRlbCRenFTR7ph6s5viB7USy6shKrSOVZxGknLViWD7pSlzVUdTfpSmz/88MPaQM4MrTuSbbPACdsxXwDZQtLEOUHvOHTo0BigKtX7Yf2BzhkHCvTRSMzER5ETiYIFQeC8kFqEgvCR3JV5RRlnkMAxAfzGN75Rm7JC7HZ6Sx0iEs5tLU5knSLHD67HLl4Rx8JmULHBhVLHGVQ9qG5UFhtsW5ZZBv9lZZzhg427JSEFZwK03y6M0gb02FqA4x7YabtdDMUkknsgpI4ztIFrV1nUC3ltTh1neBYK6pWVcYb7mZVlB8yePbv2nAXrmEQ9Nn0Ysy/UY0SmbAeyBk7YjvkG6wSiiIJE+0t1f+i8ecl5YXFDl2RtJWzIRhK2vmVRgsQNCUFgOHCgIsG0MC/jjMoCiAYSrhL8CeIoG/yJAcoGf+J8ZYM/Qb60Neu6q2acsWW7knGGgSwv+JN1nJHKyi7a2qwxZTLOLGWCP9nrzso4w72F9BlUuOZWVocAJ2xHU4CsN6QsQ0WiJAYsGEJuSEioNbAagaCQaJnqiqgFSAy3ZmAdZyANbMBxrEHqtjkaHe2Nj33sY7GfIIkzI9GCY6vCCdvRVKQNISNJISEyjcfq4/LLL48ZbVAPsI2UJnKGxJGyIXBIWhmyrbONpCt+M0V29D3gD8CsAVUP6yLuOONwdBOa+kLITJmJ0AfOOOOMcP3118ewsBA1xPy9730vSt9SPyBpsy09K98if0ha8bDR1aLbJLSsUHWabBfoqmRQSY+tV7aorjLXmJ6rq3VVRb26eyrjTL1z0QeYqaGCQdpudGjhpiTse+65J4wZMyZKMIxW06ZNC1tttVVtP9PVww8/PFxzzTVR98VLc8ABB2Q6SQhnn312uPDCC2smWtjrEuWNQECOvoU0qD447LDDwi677BK+9a1v1XJPslD48MMPR/JGTytnGi0yss3CG9IU30jn6GHRp6LTRDrvTsYZLT42IuOMDWjfkxlnIKq+nnFmzpw5tXR0fSLjDAs3LPyQ2JW4EClY7ccp4uKLL46LA7fcckvUTbLgMXDgwMw677rrrjBo0KCw5pprxo5PMlcsAX7/+9+37NTF0ThgO8ui5P777x8TI0AUkABkR/YQu/goZxx5N9J/5LLMopkWvCjjGWf6TsYZnZtniYUQ96cVM85UJmyyifDJw/333x9dkNFHgr333juceeaZURrKI2wSwVqcc8454aqrrgq33357lKwcDgZzBn76ErG2UXMgKSFV3XDDDfEFse7r/I8lCAQL4fCSIKFjzmZdrB3tj/fffz/OMLQA2cohVvv3xItFKE1uEFLPnXfeGZ5//vkoMZcF0hHSU1FCWEZuXkL7cbQ3lO4MoQAwpYWMkbiQtHkZsSzRN4SNlEXCYeJo0w+RSqUWcLQ35sxVGzG7QsJP44q0IhrecydPnhylavSM0huio8ZTrSx+8YtfxOkbCWPzwNSY7NyOvgUkbEKvQsKaBitYFLba6LZZR2FRCch6BOmb/UzFUetxDP0TyRy9qTK1A3lI2uwr0sEyrbYZZ5DeqFfCBfXa8srQDRBCmBXYlFbUYzPOkCXFwmacoS024wwLqFaH/eyzz9Z+S8+bl3GGe2AzztjzoLJAaLI6bOs4w//osdVmdLJY6wg6px1Udf/Y5h6iUtH2c889Vzue89iMMzxbm3Hm74kOG3NNe93ULecgYtFwHsxC22WQ7hHCfvDBB6OUjf6IRUp0j/UIWCAMJ2Zc6LWzwm8KRxxxRNSXC7xUNquFoz1Bn8BW+5hjjgk/+9nP4svJByIknyRAt4qbexqSlf/Qb0JATI8ha15o+g0Elee8UTXjDOfI02Fz3noZZ/LOXSbjTF7ZMhln8sqWyTjDwFlGh51VFl1x3rnT6+pXoc30C54TAyjX3g4mnQ0lbEbeI488MlqObL755vE/9IaPP/54GDt2bF3C5hgI+7bbbovliqAkso6+h4033jgmObj33nujRRLghVRIS76RKJHGbHYRFvzYhxTGBzUJUqu84Rzth0984hNxwGBNg1kXg5ZnTU8yGKd6Ika6epmUR48eHd2SiZWMPtLhKML2228fdtxxx3DTTTfFEKw2YS5Td9QFWJcoPrYWI9nPbAziVqzmdokz4cgGUjmDMoM6A3mfcpxBR2dtF5luIEGjz2KhZ911142hM2W+dPfdd0cb6/Hjx9fKYPnBDUMPDTDjGz58eLj00kvjApIyfDM6FtlBOvoumPYym0M1ctxxx0WpSbpgvplm85/CtVqzP7ZZvMRsFDUK6hBUKvQ11BboY22/0z5rliY9dLpfmb21bX9Lh21nhuh7886VVZeVDquWTQcnu7+oLlQi3EebKaVsmykDQdrzVrluytpj/1GxzdxrK0CyzfMm4wy69zx+4bz0oTxb6vRcFpSxuvQUNkBVjxM2U9H111+/ti09MqZ8ZBFB/4x+GekHHSGkjeRsHWeQduxNPP300+PiA+E2LXgZR4wY0dW2Odoc2NPuvvvucd1EqhEBQuaFZFGKlxTViMz+IA90m0hcLNQpwQEvEotpvHA23gQkqW2OQ5LXNi+upt2C3U7Lck15x6bbad0IQXnXVa8sbeS3JU67n++8unk3eV/z6k63bVmRnq3bnqve/Uvb/Ink2KJ7oDZbruF8EDZkyr3IiyvCNdNviuKOpNdi1yEYnPPKdsebszJhY19d5FqKDvH8888vrIMFRQu7wuxwlAULcD/84Q+jtQMOWtZ0lJdCUs4qq6wSt+VkYh0/kLjRazJV5uXHFBCVipVkefG1DXlB2HY/pJK3bctC2PzOq7teXRCE3ZfWVVRWx1rCtvvTsva6GMggva60GfKqcp151513vz5WcP9UVoSNKozZO4uPiqudp8/mXmuWlof0ugXOx8wir2xXY5iD9rB1cfRp0iZzzU477RR12TZZAS8OkjTTWwj51ltvrVmSIOky1cfqBKkaIQQpvCgxq6M1MXPmzPj8GazoL2zzjG1Ex1ZBa1uROxwhRJtsVGennHJKJ90yUOZrJB4kbT7Et+HFZR2FuDWEXYXcsRRpB9Mvx0eQrTq23DjNMJjLBDQNB9AqcAnb0RYgst9mm20WzjvvvLDPPvvMQ9qoP5gSP/TQQ1EFhzMFZn9MT3mh+ZbjiTLMoMLAocQ6v7DIboPm45xhgfqAwUEL89aJhsGERTMNKhxrAwilGWdYA2Ig0baOtRlnLGzGGWYKNuMMzj3WcSY1Y7Q5L7k+2+bUcUZZdux6gb1u2+Y0eBbXYNusAVVlaYPNsmOPnWPinWdlnGHWZBcJf/e730VLoZVWWqn2H89OYXhbEU7YjrYAEjPWR8TNhoAJv2qBBRMkA3FBtnx4abFKkjOGdbpAPQLRsCajgEMQCf+JsPmG3NGHK+AUBJKXQSV1nGEAQWdupT2O0fEMFvUyzuQFf6qaccZuQ3qUqxL8ibaUzTjDdVjHIwi0bMaZhRdeuFPwJ/vM0owzlNVispzwaEsaeKqV4CoRR9uAFxTSnjhxYkx0gHRmP7yskBGECdnKvVyr9kiZSHBPPfVUJESIgRcdUkUPDuFDCJAZBEV9IltIp5Wn2u2I/nOjHfLs5c7OgGGdqVoNLmE72gaSxIjqB2mj17YmVPxGukIdQPgEiBeC1rQbVQASKy+1YmCg01agMYVsBRA4JKAwnOhKlXPQ0TxYaKGFaunlGEwxtWvlvI4uYTvajrTJJkNog6uvvjrzGMhYU2eOR+LmG7LmZYaEkc5Qd0ilwPEK2o9qBEld02z2YWmSLlgipVtdL3pnuyjKfrstG2+7v6vIMr1tJFFVyZTTyPP0K2hD3jWhhuLZYJNfdlHZPrdmgkvYjrYD5HvQQQdFpxoWnNJA/ahDpGuWhC27bfaxjVTGYhh6ZI5FMkPCZhtikLcjC3uoVpC80adC9pRHIkfFgnoFqRtJD6kcr2DKcz4WOSEGhWIgUh/1MVhwzAMPPFA7FjAzULS+rmScSRcdVVdPZJwR8jLOSB2VVTbvuj6cm3HGDnJVMs5wb20Gm6yMMVoY5tmsvPLKhSGeWyLjjMPRCmAhiiw1WIzgaWsjP0K2CmYPmWthSwtYvLQQNv+zWAlZs+AGuUKCcrqgTv5TxhnKs7gG6WBGxssOkaMzZZt6MStkwY46eXGph3NQJ6ROzG6uBUIjOBW/PeNMYzLOFLVZruYQLRm1qAcLk5bPOONwtArICbrXXnuF0047rVMoXogGsiSjES+3JGxJTOijRaiQMC8fHyRspEpJ2NSD1MY+iITy0mVDaJi3oTelHogTUqc8kiDkDQGKKKiPMpSH1KjTM+P0Dt5+++04a2AQgaSZjTSrJYkTtqOtsckmm8SY7IRDUNo66Scx/bMStgJEAWXXRjJkipxK2Hz4bSVsQD3kNIW8eemRTpGwJb1D1gBi5hwQtyRY6uBYTA/5Tp2AHI0F95dBlZkKz01RRRmYm9WSxAnb0dbgRcRaZOedd46u64rUh2TMBzJHj41Eiw4Z6ZgUZLzMBDqDkFFxiHwV0U9xQSB1iBsVizLZoM6ACKT3RnqmDo5TtDmIG5LmvCJ+yIJrQCpn2sw5lQmGOlk0sxlnUh22zTgjt2vpmVMdNlP/vIwztI3rycs4w76ijDPWCQeViNVh880MAlPJrIwz3Ku8jDNz5syJ583LOCN9udQ+DHxWh522GdPPLbbYolPMD9qqmU8zwgnb0fZAF0wIX8KwnnHGGZG00BtDnpDHaqutFn9DlOxTEgQIEyKG9CBfCAPVB6Si3wwAEBRlOR4pWhlnkKp5+flNvehTkaIpAzGgU5bkrW9lnNH2008/Hc8DyeDN2YoZZ6zjTHczzvTv379SxplUh233M9CkIWshfO6x9RptJrhZn6NPgIUq3NFPPPHEmiMNLyyETSwSpEaOQbLlJWcblQWEA8FCjkiFEDjkiXQJ+fEf0jjmYkhzLBoi2VkrCCCVCZIbBJJlr015yiJFAogOqwiRjuu0GwsGGZ6n7jczJJ5TMyfqdQnb0SeA1ETW9QMOOCDqmLHVVkoxpFjUJJAtkiAkCSkjbfGtLDZZOmVUAZAvcSuI7UF9SNscj5rBJlVgMICEIWa2IXUtdMrcTBI45n+oWyjDeblWqwpwNAbca9QuSoaMNU8zwwnb0adIm8xHJO+FAMm+DkSqSNyWYLO+80BZ6lxnnXVqAZ4gbT5ScSDBKxOTnZqnyYKZyqsc9TCgkEBYunaASobpvLUTlnVJ1rYsWaxKxO6HsPLKSodts5cXncvWpeBPqZ5Y+9O60u30ul6fa7GTVVdWm9MEBll1I2Uz2DIgan2Dfahq8mJXSxdvzy2g+6d8XoApG5SrKpywHX0KqD8w88M+G/JCTdII8NIjaRO9T7prm3FE8SxE5layLvrmxceel8U1ynIe1DNI9gwS6LUFiMl6AtptvvWxqhltM0iULVvvXGlZ+13mOvPqytouum79zmuz3c9gDgEXtRmwiIzaim8G1SzPy7yydn9X4YTt6HOA5EhLt/fee8dFvkYlfYY8WICEuDEhRAK2ErSVsO3/kqTlEJIneSMhI1mzqInqhgHA6rVZKMvbRrWizPKCtfUuKss5Ux16aiduj4fI9BtJVDbngt1fpS6AuV3ZNkPA/LYStj1XWrcsRGxkQFmUsK2wu6xt8Ax4vlnrCjwnBoe8NYe8XI9l4ITt6JPAxA+LERxreDGJPdIIsPjIi4+JHSQrczZNudGPyyzO6q5Rd9i40lbSxmYbokfKxnYcIuhOIldHefBsMMFUWFipT/itAbk34YTt6NNJfM8+++ywxx57RKmnUc4SECovNZI2JoVIyEyDrVkfx/DSA+1H9YH+M5Ww9RsVC6SPFE8dIn1Hz4CBVU5TekZagJ5fEf+csB19GizmnXXWWdF6ZMcdd4z22Y0A1gZYH0CyvPSQq1QhcnxB+lbWGBxr5NQiIF3jDIKETVozCISclCxCoj5R9hVUFpxLcUMAOtY0Z6ElGXTgNkiTjU4nx5k80B7raGPPW2+BlpkB1jhCmj8zNYe01zwnI+OMXRRkMc+2OSVVrtm22S7+KZCXvU501djo2+eCtK3nOD/ghO3o84BwRo4cGfbff/+o44UcGwFIk4h7qEkgBFQdkB2LhTLxk7MN5AIJ44knlQgEAnky9WY/ZIF0x/QcoofsKM9+zgHJ2FRbdjsrWh/nkyOOzgsoxwCjIEpZ0frQ49oZAAOGTesl3W9WtD5l6BHsubkuufKrLlmnfDg3+FNeWcVo0TbXxLaNdpjXZp4VA6OsWWgrZbkXug+0gfuXDqy9CSdsR58HLzCf448/PnpDIm03QoqCmKmHAQHiuvzyy6N0PGHChJoVCYQgqxHUJRAdqhJZgEC0SNVIrQwk7IOwIS0ICRJhVgCJQjZdjdYnM0IAsXN99aL1WdjyZaL1lSmbF60vr2zVaH22LIMjbcKOXvsgZu4r91dhBeZ3RqHmdelxOHoZhNU86qijYvZ1WQR0F5ATZLDvvvtGMuHlx0KFOCV33nlnuPnmm+M3RISUDDH//ve/jxlxkKIhG8ibb1QJv/rVr2K8ESRDBgEIGAl2fhNJO6J///6R8JHMJW0r1vZ8u6b5enaHo0mAfhTpi6D1RxxxRBg7dmy06JC+Oe9TJisM7vAkUyCpwp577hkHgyuvvDLceuutMZUZwY+QplFxQOqYGSLdonYAkLg8IxkA2K9ZARIrqgBJlYJH+msMeCY8CwJFlQ25ykygp4JHuUrE0eeBJIvd9PDhw6NDjfJCotfG7I8FRKb2Cr9pnSIgWHSueVYDhHXlRd98883jFJvYI4ccckiUmnmxkaQ33HDD2mIaOm/0vEzBkZxtdhKkaMiZaTpSNnpXFsUYZK677rqoUpEHJA48JEsQybCAhoQoG+CizC6oRDhvT2ScYeApyjjDYqi9LuqyOuy///3vnVz004wz3APpoeWslJWxJy3LLIj7qcXWNGMP1825rWdjVsYZ2kV/olye6aVnnHE4ugjI4xe/+EU4/PDDw/nnnx8Xnvg9cODA+AITIwQdMtIuOkx0wkivfJB20XlyXJ5lBIQpSxCA2gNC4cUePXp0PBemf6g4kJghW6seSaFwpQTah1C++tWvhl/+8pdxQHjsscdq3pyQKd+ecebLpTLOQNgQqdVhW8eZrPtny9MHMLeUvpt7ZSMUNirjjKtEHG0PXkQW6LAKuOmmm6J0CtAfr7XWWlGChgiQfCGqbbbZJkprqClwgJHJF4TBiwkJIT3x4X/INks1Ql3E1kb3DFEJEAE67Pvuuy8SElL4jTfeGBckkUh5oYtM4yBhpFwIAv23nDm4VgiJ623WjCnthtlzc4AymDM4MGDwPHoq4l9lCZuA72PGjImdn04zbdq0sNVWW9X2M6VAarjmmmviyMzKNqvuLLrkgUUWpqPUybSFVfQDDzyw661yOAwgQabBkCJ9EilJ3oiY8rEPEkUimjRpUjj33HMjeQ8bNixstNFGkQCRsrMyzmiKTHmOs0SLrhoSJuCUdcohuQF6bSR7BgukMaRaBgSk2noSGJIjH2YDqFM4J5Ie35yTgaTPh2IdMSIswX0cO3befccdB9OGsNNO3ToFz55+gOQtqR7VE6qrnsq6XpmwkShYTcc7DEkkBbnzCF958cUXx6nLLbfcEvWBNIppZhaQWkgm+uMf/zguzDgcjQAvDe7cSDuQL9NdJE/cuxVMCeGAaS/mfNKr4gEJkRLVDyKG4CF7JGl+Q+LbbbddDIEKcfKCotZA/4yOWqqCjTfeOOqmkbjsVPyhhx6K0hg6ZiRs9nNuro/3K/W4RK8rNQCDi5x7eKcgaOl0KYvAwzUySFm1BKoWeVaCNLmsUpcBxffOA+Rk42EwwFi9dZEXoAY8geu0ZaXrzkL//v3ncdJh5iQw6KEiilhggbDkhAlhDvdy+PB/txmyZnvkyE6u5ZxX6pAspFH/GHS5T6im1F62Nfj3FCoT9qabbho/eWAKuOuuu9by5xFg58wzzwwPP/xwLmGzcMIHIJ07HI2AHFOw+kAaRRXCb15sZocICszkIG+kYAQLOVJAdkjaLOiRYowFw8MOOywSGTPMK664Iv6H2mTw4MFRJaHFJpEd0paCNtkpNGaDRx55ZE1NAlkjFaPisBI6+zEBRI+OnhpwjAgC0uD8cpDh3N/+9rej5EfYVa4HUqK9Sr1lnT6sgwskb/XIHKtrSRcd5TVoSZ9BRuUpq/uYpggDcu/OKqvyWYuOKmsX/iDwzLKDBoX+r7wSljnmmDD99dfDjMGDw5JTpoQwaVKYPmRImDFoUFh47szEltWgnS466n7rurnnaSwRBr2eNq9s+KLjmmuuGVeskcAZ0dHPocNDkmkk6AC2E3RHke9oP9A3ZEeLJQZEjZoO4oEEkYwgY4QI9NgnnXRSFCpIbMCLiQoEKRvJGsKcPHlybeWfdGO82ASQovyUKVOi2o/BARUFqj2krRtuuCEKLlYy49ycF4kt1VNrG8JBN015ki4gOUO4aZQ3pEkIRCnJaCeEzvHUzwBFfG4IEeIrShEmghVsQuIyKcJseVu2TIqwonODovRhLxaUfWXYsDBnqaXCgGOOCQNOPx1xPpL1gIkTw4A6ZdNFx6xz84zlPUlZ1kroM7KuaQnCpmMjVbOqzmjOgybADh2nkRg1alQ49thjG1qno32A9IP0BfmuvvrqUUqG4JjtQc68WLyQqBN44bCPPvjgg6NqDrWGJFl0zfQzJCdUF5jL6cVGgr7ooovC9ddfH3XeECXkzQurpL2YCVoVh2IyF+GRRx6JC6LMZFEvQnhZhM35ZbHCYhfHcC5mD0jAnAcp3SYP6HM4+ugQTjghknVYeOEoaTdqOZZBETNCZm9I472Rab1HCJuRHikb6YZFShZ2GN2RPhoFJCb05VbCzjOjcfQtoCPFGQWSpd9NnTo1OqpArvQZiDs1S0N6ZMER4kVdQdkf/ehHUcJlCi7dKXVDlBAy/RuJdd11142EjwSmrOvorJXz0eqvCeN61VVXFV6/3OLR72Kux4J9Fskj/aHPRoqV5Keck5xTnnks6vN+0AYrYSvLe/o73eab86ssg07R8fY311Z0bJlzd7XsvwgGNXx4WJRF54UXDv1mzgwfnzAhvHPyyZll7bn4ZkC3g2TWudB7o1picObZKtt8eqxFdxYkG0rYXCidHcsROhqgESzO4DnWSMLmZctKZOpwQC5YJ0nq5OVhhkdKMNQOcpCw/YcXDmLbaaedIsEjNWP9tMEGG3TSmRLdDzK06gEkcciauiE1FjWxgc4CM896KaIgedQu9UDbGJgAbbExtBlYcPRg4JEzDee1pCtiAdwTe112H98QlxbT0rLp8bYuEbY91u7Pqkvmkmm96b6suuz+T02eHBY966zwzmGHhX8NHRo+Nm5c+PyYMeGdT3wibqdttmVlximdf1GbWS+Qmaf+T+sGeiZNQ9ianqXSgDzEHI7eAqqNlASLQP9EoEDKpiy6yZ///Odxn/WsyxIUUmeMIvAiN8ptGYJA/w4BZGWpYQBhH/p6ZgTcAyths0/3Bf2rvUd2W6pNO0jZsunx9jeErYzzWcdWqavMdq0urEHOOivMOfbY8Inhw0NcOhw9OkyfOTMMGD066v3fHjQoty7am+qwi67T7oOwNbsSWPNg0ESQ6NUUYVyYVdajI0SCZpRhesb08NBDD62lQrr77rvDhRdeGFfhhV122SXam6KH1tSPlXr9xlSJOrWY4nD0JCBQ+jXSL6Z5qA6Ikd0TuPbaa6ME3gigM8UBh0EAgpEVBxI2RMmiI+aHWKlkJYtta8yeHWYcdFD4FDpsg6jDxqkoJ7luo6G42nCZTAC7YyBRmbDpIOuvv35tW3pkTPmYShJCEv0yweDpJJD2CSec0Mlxhg5lpXAWeFg5F1Cf8IH8sTJxOHoS55xzTm1xjn7JYlKjEhmkQMXC+4EpYFckLWuHDSGTRBhJGinfWjnoG+FHMUb6FEaMCG9ghpe1b9iwj74TK5FGAnWVFoV5Xo2yza5M2JgpFU3pUMITk6EIKQnLLMbh6A0gkSJ1YmqKJyL9cbPNNgu/+c1vIsFBpj0FFjuZFiPYdEXSRriBDJThG9Jmas5vq7pBsmPwUXwSZqyK/ieHEwVDAlavSv1FpmkIYlihqGzqzGLrssGWNINmhq6yaWyONDBSmnHmj3ODQ9lrFeQtamHPTXttm+kHAuVssCbK2fNgY402Qf+ljkepXpr1kDXWWKPhliMe/MnR56BsLFiEIP0wRUalB4Fj9sfU1ar9Gpm/DwLFogT9OOaGKWGVJW0GHK6ZxVQcPqjXZquhjRAY029IkHUk6zhTL+MM0iGSeVHGGau755wqD7HJ4UTR+pS6i+vBsciWrZJxZqGFFsotq4wzaiODUhqtryjjDO2Sk1PqOMNAjhWaPTf1ZbWZ+0efwhyT8xd5jVaFE7ajT4IXkrUUiJMXizUWCI11FV76nlw7wQacBU4cY2wcnjwsfcEFoaN///DHnXeumfChtoGIO0aODIsQfOjEEzut+WDOB6GwDXlkOc54xplPFWacyYrWV+a6Fe1QmdXxOOVeNiL5gUfrc/RJsGZywQUXxGQA2GWzjf9AbyRYhTSw77733ntLHQ9ZLzN1avjMGWdEfTUkACn99wUXhH7HHBPenzUrSsNIr5KwUR0g1SI5pgTp6B0w2DAIINXzzBSfuztwCdvhCARu2ymMGzeu1zK1MEhA3Ey1JcnmAckafHPq1KgeeG2llcJXrrgi9J86NXw4fHhYZK+9onSJBJzmdIQ0mDkgQaYSoqN3gHSOIMAzQHXSndCrTtiOPgemvUijivSGvhZJCALFrK83XLkhXpxwsLqqR9gibSTlb110UZh9zTWh/4cfhpd33z3M3mmnMP2vf42qByQ41CRI4dLBMg1HukPyRgq3OuyijDPcn7yMM+jQizLO2N9ZGWc4Z17GmazrKptx5rXXXqvFo7ZZ00WQRW2Wo0texhnabLPOF7UZHTbtTBdu42A7dwG4q3DCdvRJiQe9roL8Q+C8YGRNZ8GxnidiIwBxkH5s5513DltuuWWpMg9ttFFY5rLLwgLkDIQsjz46fGWZZWJdkqxZ4ILYsaiAMCAPZczxjDOhxzLOFN0/wABIzBGuPbWqqQLXYTv6PHjBkbCIx86CYG+BFxpCrafXhOCQDr97662RrGcvuGCMi9Hv+ONrOmu+SciAigVrBxzRiDIIYfVGUCJHNphhYALJYMBgwbPsjtWIS9gOx9zgT0zTezu1FvGrke6t41gKVDbfu+OOsOzFF8fA+68MGhSWufTSsPQxx4Sw9NIx9rN1mIG8Cf2q9FVIie7n0LtghqOY6wzMzAz4jwE6teGuAidshyOEaNPM4lxvEzZETaCpovN++cILw/9cfHF4ervtwjeGDQv9Xnop9Bs2LLz9zjth8eHDw5LolidOrBEEBC+bYab4qDTQwVrHmVRPzzGKTIdUWDRtRxdu1QzKmanyqVelHSwUl0RAx2zL5mUaB/3mZuexoF0qa2Oq6Lz23EVtRnWTPgNrf0+b7TaDrL3uFOQAYDC2MzbUJN3tX07YDsfcYD+8lL2hv04TfpxxxhmFx3zw7rvhsa23Dn/fbbew2EsvRZM9iOjN7bcPS5G0d8aMMGOuAwcEAikgYes4ESOSt100w3FE0h7tt+74WDPIKSQr4wwqGpXlHJChytuyyjgjx5k040xaVlYtRRln3jKxOJBc7XXbNkOozDIs0Ra1mbJKIpGVcYb6yrSZQSfLlJL7yICSenNWgRO2wzEXhCJFSu1NkOILUmCgyLNO+eNuu0US+MKSS9YWzfiGIMieAlmzjVRHbBGkTuUXlMSZtWiWZpxJpcWqGWds+aoZZ2zZqhlnFsgpm7XoWNTmqhln8trMoiPrBnheUgezAqR/nm93vWZ90dHhmAskKiSj7jo3VAX5TJ944onc/agYkMogYqRPLC3sYiPf/M+1cwzqnTTfoKN3ATFjEaIAUDyPRriou4TtcBjwUinUb28BN/VTTz01qkeygJSKFE5SBEnWWfGvIQYkQqbuqCH4LUcgxaq30qT9D5WF3W+3Zcts96f12e2s33nHptdR5brS7byykrCrthnSLdvmtCzbnA8dNv0JSVv1dUcgcMJ2ODLSbvU2YQ9TyE8DXm70qmRtQsJGT4rO1maWsd8cqyw7TMchBql4cDiBMGzGGY6RGga1h9XXsk/bkD+kZxcEbdl02/5msKFuqzsvKptel72OrO2s67Zl0zRfZeumXu6VIvql15XWZa+D+yS9P6AeVCJ6FjZ5eFU4YTscCcp4HjYSECnWHJCqzVLC4hrqDXTPkvjy4l7zDRFwHLMEnGWw/9XgQ5lUh61YzQCJ0A5Udltxwq0Ou+h4+5trYpCxOuyislWuq942A1eqw867znSbBehUh22vq6gudNjcM9uPmBVpf68mMHA4HD2T2AAJGn22wAsOiROUChMxAR22hSQ3YjAT19tKjY72ghO2w9EEINg9qfWw8hCYZmNmhpUB3yJqdNRYIUgVwn4kbKQ8CD7Nc+hoHzhhOxxNAMK8yn5Xuk9iY6BS+M53vhOlbYIGSSXCN5I1li3oWSFxZZhBf/rb3/620EkDqwWVT7OvYJVi7aZTMCDgAq+yqTliqqO1dtTo1blWlbW67XqOMx0dHZ2uWddqVRbW/jl1nGEws+VtcCbKpW22JnioMbDAUdl0FlOkl07bXNTGenDCdjiaBMsvv3wMdo9tNkCHit6ZxcSHH344kgI6bZxJICq2kaSVsfvJJ58MTz31VCQmZVdRRD0I1kabQ7+NXlmSOIGJrOMHBKOyWdH6kPBthnHrOII9uMgpK+MMOm2VhRSpryjjjCW+mTNndpo90OY044wGvNRxpqjNyjijNqeOM9SlzPNqM/VltTmN1sfMCJ24zQTfVThhOxxNAqxFbrvtthphC7z8EBH67WWWWaaWEQfyhWCUqAAyRMJmoQ1y4bdczLMcZ6wTiI2lXTbjjA2vWjXjTJmyedH6FjZlIfcq0fry2lw244y9f/Uyzuj+8Zt26Lq7khZOcMJ2OJoERAskr6RVi4iUICKIk+S9EAIkJKkZyRAy4TckgcTayDyCjuaBezo6HE0CJK+11lor3HfffZn7FICf5L1Ic0iPfGPCh1s920zRmZKnuQ8d7QGXsB2OJsLuu+8e9thjj5gNPY07gdcculR0tbfeemucamPuxwKiYnYoLRh6Z+lg+Y2+dcUVVyydcQY9a17GGST6oowz1F2UcQb9e09knPnnP/8ZLWa6knEGlQhqpbyMM+kaQFGbUx12ev9ch+1wtAnwasQqhOQDq6yySqd9EA+EAUETjY9wqeSG5P+sjDOKQYKFCRI46hLPOPM/vZ5xRjps3T93nHE42ggjRowIO+ywQ9hqq63m2Yd0CFlC3FiMIPlJWpUUuPTSS8f/CAiFfTfEaiVAR+vCCdvhaDIgDSONYTGCBG3BgiLSGpIfJm1InEiQ6K6RLEnsC1GjHpAJoDvR9CJGjAgLYhu+zz7z7jvuOAy+Qxg6tMvV+6Kjw9GE2G+//cKVV16Zux8dKSZ7TPmJ4sd0HfUDhI59MfswAWSajl42jUBo9c+qj7J80FEXpRRDLWD16+h+0S2rfBqNztbF4GItYKSXVtmsTONCPxO8SkA9pLJS3eQhbTPqGZXlnqWwbUzbjArFXnfNYWeBBcJCxx0XFp84sVObFxs7NoThw+P+7sAlbIejCbHeeuuF0aNHRzVHXjAqSIRFtYceeijqsyEUTACRvtHzQiSQNYuROLYgeedlnGFx0Cbr5bxFGWfYr7IiaJVHF1w244w8FVUWHXyaccbiTbOYBzhOZZmV0GabcYZry8s4Y9vMt3Xgyco4Q8zyum0eNCgsThCvsWPD9FmzwozBg8OSU6aERSdNCtOHDAkzBg0Kb7/0UugqnLAdjiaWss8666xw4IEH1pW0IWxZYMi5BCsGFtmQvlGP8Dsv4wyw+RIhuaoZZ1Qecq+ScYa67bmrZJwBeWXrZZxJy4KqGWey2vzemDHhrcUWCwPGjg0DTj+dkSGSNdmBBnRz0bGySuSee+4JW2yxRewEPNRrrrmm035G9MGDB8cOhDsmq9n1ctYBpn94eNHZ0MP95je/qXppDkdb4Yc//GGU3JBQiwBJI2UjmTJVZ6r/7LPPRnUBRAmRW7J19DzeZpBFBcPMYuGFo6TdCFQmbDoE9pxkyMjC0KFDw0033RQuvvji8Ic//CFKBxD4ddddl1vn/fffHwYNGhT23HPPaM7E6jifp59+uurlORxthZ/+9Kfh6quvLjwGHTLv5EorrRQXGJmm40yDDhspMA3i7+h5RB32XLLmG7VII1BZJbLpppvGTxH57rrrrlEHB/bee+9w5plnxuA1AwcOzCwzadKksMkmm8TwkuC4446LjgFTpkwpJZ07HO0KBJnJkycXJulFz8pCIXpVcghqAYypt3THzHzlso7EjiON3NfRgyORW1jdMTps1ApWPWD3M9O229ahhPNjsWKj2aV66bJ1ZW0X1YUOm/NrsKpXt93HPUJ9hG131v6iuj45aVL47JQpH+ms5+qwB6DD5l4OHtwpzdh812GTlw5pGm8t1CZ33XVXjGRFjIQ8PPDAA1Eyt9h4443nUbdY0AFsJ+iOXsjhaFZADHg//upXvwpHH3101NHmpTBjUex73/tetF6wmWiQslm4hHCVDBa9N+oW9kP2LFKmuuEiHbbdX6R3Th1nssqWravqdpYOu2zd3KdUh50en1kXpntTpoS3DjkkDBgzJuqsw8SJkawhbRyG3hoyJDQNYSMNIFWjw2ZFmpt19tlnR1fbPGBSk9qKsp1laiOMGjUqHHvssQ29doejWbPRPProo2HkyJFho402msdlXcBLj5jZ1toDiwokbsgZ1clXvvKVKBlCLnfffXckHfZZSdLRDcyeHWYNGxbe3mef8FGcxI+AZB29O0287qaww4awSWmElI0Jzbhx48L+++8fnQAaiSOOOCIupujD9MfhaEdg3fGLX/wiCj/XXntt5jEQL2oN1A+K88w0/bHHHosSMlN8VBtIvAhSTPcxCkCFYgne0U2MGBE+POKI7H0kWh4xolvVN1TCZjQ/8sgjw7Rp08Lmm29ei43AqD927NgY7zcLSkBqwbb8+rOAjWQay8DhaGfSJrM6qsNf/vKXYbvttpvnGFQW3/jGN6IETqAoSBy9N4TMFJ/9JDhQFnb24y1JzBKrXkQSL8o4Q3AjBgbF2ob4LWzWl9T5hd9ci8qmi6Fp2RQzZsyIZoJZGWf4XeTwg9qUwUvntm2knK0L2JkM3FalzRbUa9tss/vMV8JGmW6jYwk8lPRmWBDv4Pbbb+9kb8qiI/87HI6PgBpjyJAhcSEeoWjrrbeu7ZO7OrNNrLP4DUEgSfMbooJ0WHxEZ826EmtM6JZZtERNwn8QCxlueGfzMs4glTMQiLQ4B+eV0wlelSLirIwz/FZZuMKWrZdxZvr06Z0SPLA/zTgjok0dZ8jmQ5t1buvgo4wz4q7UcYbzcD/LtDkr4wzXobL1BqWGEjYPXBcJ8KBCgsYwn8WQddddN1p7cHEo/NGTXXjhhWH8+PG1MrvssktcBEEPDeiElEN9gmROkHZ0djgNOByOf4PFQdQjw4cPj+oOG9EPYoIo8GUgABTvI9YlSNboqCEr1CHKC8kAALmzXiQPSPwmOJb3mXWostH6qmacsTrzqhlnFjdlu5NxBp1yb2ac0XUXzQIaTtgQ6frrr1/blnUHpnxTp06NZIt+eccdd4wXyg074YQTwr777lsrw2hlbyKWJZdeemlcBUelwsIIFiJM7xwOx78h8jrggAPCySefPE8IVogB8sUXAtUHAhbvE1IyRIJLuUzS9I3kiNTMgiYSKsSSt7DpmL+oTNjYVxeNEIxQ559/fmEdmPplpUfi43A46gMSRs2IUIQ0LCCFIi2uvfbaNTUJx6L3TSVsfSMJoqqAtNnmODeTbU54LBGHowUB2W6zzTbhlltuCT/5yU9q/0PIqCqQqCF0tnFb//3vfx9JHE9iVBI4uPEthxn0t6gIcK5BypYOFn0z9t2oYgj7WibjTOo401sZZ1577bWoElF8DwYgq8Oul3GGT1czztjfWTpsDZ7AM844HH0QeAdfccUVUT9sVRjWsQZygGwgeMgG0kUdid6ab6xJpHuFlNEJo8uFsNABUy8SOCFcJcl7xpl/wzPOOByOUpB64/rrr4+xRLKANAsZkbgXqQ/ihZiWX375KOVC0Ownbo/M4vh+7rnnon4c8kNidJ12c8ATGDgcLQrIevvtty+MbIl0iVSNlIdkKwmXbcj53nvvjSa1UgFA3lh+Ic1SFjVDKg075h9cwnY4WhhIykzBmWbLMSMLSNdZkFqE6Tu6adQASNVI4mxnZXmxTjbaZiBQGNgip5sUGkRUNnUqSQ0c+iWSPu1SWX7nBcjKKou+WmUZqIoiGqZlmXV0tc3dgRO2w9HiUjZRMIknj24XHwkcX/AqJgZJGbUKpAjZoQPG2QQHFH5D3ixAMhhAZri882HhD7KSSzuEjZrFklqaccaSPOfSoqPinKgs7amXcWaWiXZny6KX59oUg6hexhlblkGKdhdlnMErVGXTNvOtsumio67bFx0dDkckbKxAIL9tt902Orwcf/zxUVol2Ug9yDICIoGIIE3ICgKEfJDCITPIHd8IEgNDRnbBjeO1qAbZVck4w2BgIwFWzTizpCmLCqdKxhlb1l53mYwzeW1OFx3Tsr7o6HD0YeCqjeejtYIgxjzkjZOblRLrAbUK5IyKABNALEMwk0NCJA4+0jvWEmksaUfvwAnb4WgDpOZqZJuBaKuQNUCqRFKHoMlgg/4a0kaChKSxIEmzjzt6D07YDkcbAusPQj7kJTsQ8hIioMNmug9x40yDVI3KBPtr1CTSLSOJS5+b5zgD2VsdNlJ6VzPO/Kkgw0y6jeOMDUaX1p2WtddVNeOM/c39Qe1hddh2f1NlnHE4HPMf5513XlSH1FNdQMZ5NtYQHqn9yA8JyaAuwT4bvS6SOzptSB0yh5Ak5Vtnl6yMM3Z/1jaw23nBoOptZ+mwQdZ1pttZGWeKrtPuy9Jh2/29mjXd4XA0N1BbQKBy0e4qkJoha0iXhUzID6JGykbPzTfSuSxNhHrR6NL99bYbVRYUXWd3rrtq2a7CCdvhaDNADkTPJPtTd4iCsqgJkLRxpiFSJxYfSOXsg7RtXA9Hz8NVIg5HmwFVAIl7H3nkkXDnnXeG73//+/F/JeAFZVzNIWVM11BJ8MFMEBUBse4VCAnbZNVZRXKXI0+Rs0oW3n333U5OQFUGJOnaVb6KLpmByZatmu3KlkXv31U4YTscbQgImeBQxKbHNZ2ofuRaJY42FiQEOapHluh+IWPIiuh+LKYRqhX9LGSN6kXhXCFSm31FSB1nIC4WIZUcgWuwmVtwdkFXnpdx5q9//Wv0zBRw4LHOLpaEszLO4GYvr0Scd9KMMwJ1ocPWoiPXQeAplU2v27ZZXpBadOQ4ttVmX3R0OBydALF885vfjAGc0GWjxsBemyBPW221VfRSRKUBARYBYsKxBnJbbbXV4kIaUjZkDQmTJAEiS51K8hxnIC703jY+CYReJePMZ+aGeRUZdjXjjC3bGxlnGhGtz3XYDkcbAkkWooCgV1555XDMMcfErE+oM9BHQyp58UVSQHxIvffdd194+eWXo1cl7uOQMATq6D24hO1wtCGQgC+66KJw1FFHRUsPpFIkRBYiTzvttCj5IgHivVgPSLZI2MQmQUWiHJGoCZBmcWF39A6csB2ONgJEzEIc+luk4cMOOyxua3HuBz/4QVQbkMiXHI6QeD3nGoC6gIS9ZK0BSOqoAFCp8L/1fkztni3stWQhLVslDndHRmQ/+1+V66oXJbDedad1NyqeuBO2w9FGQNWBbhoVyC677BLN8pCOWURjMWyNNdYIBx54YLj66qujJ2SR44yVsFGBEPSJQUCLaHzYh4SdpvlCws9KEYb+ln2UFdKyljzlDl8mRdg///nPqK+X/TmDFgt8NkVYWrfAoqPShOWlCOOYvBRhts1ZKcIgdOoEHq3P4XBEEAcEu2nIBnM+yAJChWiWXnrpaNp37bXXRksRLBusdUMWIFyIiLJI5nxTP2RErBFZUSBhe4qwZeO3pwhzOBylgDR99NFHh+222y488MADkaBReTz//PNRAiUhL6Z5WH7UsweWxyTqDwgXomXBknr4D+KBIIvUAY7Gwgnb4WhRQKiWLJGGSReGRE0ORwiW30i53/72t+N+dNA2Al+RWR9SIeWRNMlsA5BekRQVBApzPralUgBVvB9pgy1bNXPLe++9VytLPUUZZ1JwLpXlu4oTDqqWrra5O3DCdjhaEBDFZZddFqVlAjKRlxF9NbbXO+20UyRrkRLEq20RJN/1puZatEOiRh9MHeiHIfCnnnoqkjfOJui3lTsSWCea1HFG+mtlnIHoqENl+U4zzuh3R0dHHGQsOVJWnpaoS5TWTDpm6zgDydqMM+jDpabgutA7Wx22dZyhnieeeKKWZUeONrpuBg7bZus4o3C1yjrvOmyHo4+BNFi33nprOOecc+JiIF6N6Gvz8i6mKCPJQpAQ2FprrRWJjTohaaRYovihI0aSZxuykgciZapknEG/br0XrUNLliPNsknGGVvW1l0m44wta7PolMk4w+CV1WbPOONwODrh/PPPjyS6884716wikEZRYTTCmQXCoV4W4ZDgkWKpFykelQrWIquuumrlWCBVgdqFc6YLjX0VTtgOR4sBMr3rrrvCueeeGwkTSfjyyy8Pp59+ejjxxBOjRFwWWQkM+I9pO9Ip5IxFB1IqA4QkRaRiVBdM86sGfyqLU089NQwePDjmpbzuuut65BytBidsh6PFQAAnrEC0YHj33XdHF/R99tkn6pbLOMIIqR02KgykWi1WojqRCR66bP7jg44XQkfShsTR6Ur1gO5YvzmWcjbgkd3P4GC3uRZtYzPODALS5jwAXbpVcTCryKtLwZ80C7B1A/s7rYv2MVjhkp9Vd1FdCv4ktVRaturCarcI+5577gljxoyJynuU7tOmTYvBZIQ8I/zRo0eHQw89NHMfo/mwYcNiXei7iH1AElGCzTgcjn8DG2oIkOzlAtIuBIs+FfO97oBBAL0telgsQbRwxzZEBNlg4w2RYcvNB0KCULHR1iKbfkNa6LitDlt23QLltc1vWx4TRRZW88rOqVMXqhRL6LbuorrQ1ac67KLrtL+zdNi2bK8Gf0K5vuKKK8bpShYgcfshVREkTgbnPOy1115xAYXYB0gIuMxuuOGGdSOJORx9CRDK8ccfH98XCwQbwp+i18ZKpCuAUCBjCBhyhWRxMuG3ssrwTmLeB/FgLcF7zcdKnWU+6bF2O62L7bJl+2XUZfeldderq+i6G9HmXpGwCRZTFDBGnkJWIiC3HB0hC4xGV111VTxunXXWif+NGDEi/PrXv446OTqow+EIUaCBkGUeJiAJoiJBx7zccst12epE7y9kjLD0+OOPR2keaRpJGfWJwrI62lCHjZ3jDTfcEC644ILcY5huMZ1IV7bxpCKcYx6kSxO6M81wOJodmLqdeeaZ4ac//Wnm/u9+97vdqh+yR62Crpm42UjUqESY1qMDRqLkP0gb/Sz2yXr/qlqKIMmrbFVpc9asWZ3e+yrOLvCMPbdif5QBx9qy3Wlz0yYwgKh5sNtss03uMexnceG4446L0y06DQ4BuNWm9pYWo0aNCscee2wPXbnD0VxA5YH1hw0+1AiwWIh0zXvHIhtqTOKLIGFjTgfQ40LY+uZ4VKNyKkF9YrOvWD166jiDSzzlVZZz2rKcH3NCbbMQKMye6xqvWCFpxhl+o2cXFPxJ6guOo6zOjdu+XShEwBRSxxnuB4ODtvnOa3Ma/Ik1OtbmVLaejfx8I2z01zvuuGNdu1CmenvssUdtNCdLxqBBg+LCZh5IfTR06NBOErZd2HA42gm88KkqpBGABMkao+wxkCXvIRIhi5iQDSoRiFVegbzPSN82r2Fe1pisjDP8tsGfIPGyGWcWWWSRTu859et4CLdKxhlblgEI88SeyjjD4mdTB3+69957o8H9FVdcUfdYHgimSdw0GkNH2X777XP13oAHVzURpsPRqkDqtV55WcDdG3KFZCFVmbRBvhAxRMI37xmkpuh0ECbSKASEVQhSN/kPUY1AUEiiELRj/qPHCBujfgLOYFFSFoyOfOh4N998czQFdDj6OpiKoxLB1JV3I8vOWs4uJHqFdCFuJEtUApA3JI3ag6k+kiAkjEs7ZM6MFulSEiKSIYSOvhopE6nYCbs5UNmsj9GY1WM+AJ0Sv20wb6TkK6+8ch7zI4FUQ1OmTKltQ8433XRTrAvzPqxKGN133333rrXK4Wgj3HjjjeHrX/96JE5IlHeNj/Ir8v3ss8/GKTdqAdQI6LrZZrGMqTzSNdNyiBu7ZsXrsIt2kLvyPDJ7ZYYL8TOlt7rh7qLKQmF3j+0oWb5eJpzuoJH1VpawH3300UiogvTIu+66a5g6dWr8jZssF4keOgu4tFrTIDoJOmkCo6Onw2b7hBNOmCdYuMPR18B7hLs5Kb1SsBCGNZWi7zE7xewOKVxR+VCJQLgcx2Ifx1AOIpafAwtnLDDykYcf0roWzZC+WQxUJDt+s9+mBUuzrwhdyThjU3vZfR92IeOMjdZXVHeZjDPcj6KMM0JTZZxZb7316o4Ye++9d/zkQavPAjakfBwOR2fgj8BiYBrnmcVCFt8gFMiC9xIyQ4pmH6QI4TAjVtJcJG0IhzUj3mG+FRuEOnDAgWAhHBYFtWgG0SiWCKDedNEReMaZZeO3Z5xxOPogIN2TTz45zj4tkCQhVcgEUkCqhmwgBpnYQYoibPZDuhAJs1jIQ9KmpETUIdTLwiYSdE9YpDi6Dydsh6MJgMRL9nFIVlIgnr7orjXFF1BvcAykjO8CUp+kO0nNkDnH1ZOw+aYsgwNkDaEjBVdRR1IH5eWIUlVna8tWcWaZn2W72+auwgnb4WgCsGjI2hAqBEiaqT8LjOPGjZsnIzo6ZaRjfkPOkpL5DdEqAh/EizUI5K2FQ0nY6GzxJGYbskHipiyEjioAiVxOIejE5TgDqAd9uKb4DApcg0ie65LeOHWcQZLnupSphW1MCFWWc9uMM9RrM8784x//6KTDxmFFZRnAUDfIC5G2WccZ2mwzzii2t8pyf2lLlg6bNmNcoTYzo0FHrvIcrzZTD9chHTZqJrYVhtYzzjgcLQ4k5TvuuCN6B2MpNXDgwLDCCitEKVmQXhT9MQQP4Z522mlxnyRsAjNBPmxDuFh6QDIQnZWwIRF8H9B9Q0yQjaLJ8W0zpKQ67KzsKxCbjVxXJeMMpGej5qX762WcWTqnbJmMM3lly2ScYdaS1eaezDjj6Y4djiYBBI3vwSGHHBJJDhLH5hrbaogKyZvfTMMJAnXnnXd2mopjyQAx2P/QaVvLBhEQ0ieWIki6sl5wND9cwnY4mgyPPPJIlIKl6kD9wJQcSRj/BIDkTYhj1Ac6DikXKY5pv1WVsAjJVF9maag/OBailjlaI+2sHT0HJ2yHo8nw5JNPdgphjO4TvSeSM97Ddnptv6VztjEu9D91yCyNbczX5AuB4418IAQGCS12Mr1HrSCdLNeBCaFdDLXb9rey09jodkVl021mGmWPzboO2mtVInnXmW4r+JPsstM2p9v2N4Mfen8biTDd31U4YTscTQReZhbVrJUGi2VatLISdZVvCFMStrLIoFqBVJC2ZR4o8Fvb6GchPbsfErfbqFe0bX8rzZg9lgElryzXY+vm2vKOzdq2dUOa/LaEnXedaZtZrLQ67PS60m1bF/eZe5Z3nVrY7AqcsB2OJsLDDz/cKf0XgHB44dFfW1M8wDcEgcQMAWdJ3lmOH8QVUcAnyiFdW2kTKxVtUz/XYPejksnbtr8ZKKz3YVp3Vl12f1p2sYLz5pW1hJ13nQCVky0LYXelzZA5A2/esdbKpSqcsB2OJgLZl1hstIA40ENjwgZxY69tJWhF01NsaCtZo/ZQ8H2IV7GoWaCEWFiUlLrF0fxwwnY4mgiPPfZY2GyzzTr9B1lDrFiJZEnYkpgh3vR/pDpr1oeErTowI2TREckd221H88MJ2+FoEjCNZvqeehmiu2bRCnUJ++RMoiwncjOXeR770ZPaQEboW5GwRcxExkTyxmkFtYX+R3fLAqT1/EsdZyB/6taiGlK/zb7CIqaADpvycpzhGlDFqGyacYZrRc+ubRtgafbs2VGHbxfzaJeOtQGrVNY6znBd1K3yymMJmIEwU8nLOMOx1K2y3Iu8NqfBn7hXcljSuboKJ2yHo0nw0EMPxQBMabxr1BfYS+OkIekYhxiIVkk+UskbQrHBn1LHGR0L4bANQYt4iY8N6VQJ/qRwrWUyznAdNvgTBFYl48xSJviTbXPVjDO2LKSKHr9K8CfaUjb4E8/Ugz85HG2mvyZWtZUqkfpYsGIxDUkViIAgM4jWSpVCnk5aZfUtKRziXmmlleL5qc/tspsTTtgORxPprzfffPPaNpIZ03ykVLwgkehQCRADA2kTyRuTPwgeUreLjUiaSKMQMkTP4iNErGSy1ME3qhGORZLkWKb+SNqO5oQTtsPRpPpr9KdM6yFsOcxYlQjqDRYMse/V9FvqDf5DKld4VUiZY9NofZxT8TCY0kPuWKFYG+IUNglAM2ec6ah4jUXHW715VVBvd8pbOGE7HE0AdMApSSJFo+9EJ4tkrcVFviFlpGW+tcCFZM3xkC4fSdhIz+ihGRRkzqe6lFCAstSFJE5Za+rHNgOHFjWJl815WiHjzOzZsxuWcYZjWi7jjMPhaDxYxJOOWoBskIyRptMY1pKw+bau6liUdCXjjBbCMB2knF0084wzwTPOOByOfyNryoxeGhJ5+umno17ZZomxErbVXUOGkl4hHKRCa9aXStgqy/aqq64azyNp2NF8cMJ2OJoIELAkQqbVkC6hVIskbJAGeypj1pdlCkhZSaiO5oMTtsPRJEBNgFpE6gLsgtHL3njjjXEqbqViiDaVsElqADiOdF+A+pCuldNREjaDwYMPPlhzmJHjB/vQlytYVJbjDIOAzfvILMAm1rZek2nGGb6ZAeCZKR33c889N49zTFbGmTlz5sTzWh32M888M4++XGqLNGs6bbYZZziPgINNmnHGOs7QRgY9q9awemuuS6Aeq8NGp83xqJFUV1fhhO1wNAkkLctxBoJAJ4sji3SvViq22Vfywq1iAWJ12HJNhxhJgID1iUhIZbHFrppxhvrLOM5klYUY7XZRxpn+/fvPk3Emr2yZjDN5ZctknEF9VEaHnZZ1HbbD0QbgBX/iiSdqErbyH7IQiPQo6S9NymulPAjZmqehFrGONko5huQKGUHiSKKO1oATtsPRJPjOd74Trrjiito25ItqA+kMpxqIGv0yJC6HGaBvJEKRvo3ah7rCZpxBLaAkvxwPwXcnvkXLY8QIxPEQBg2ad99xx6Gn+eiYJoATtsPRJGD6nhU1D7UC0jGStzXFA+k3hFyUcYZ6IHCcaNCtQtQEJkJPLb03QAcrM0PZEQsQvN2fHm9/K/iTXcikPu2vUheQjblQVJbzoLbQtafn0nUsOnNmWGzUqLDY//1fmHHiibV9nznjjBDGjw/vHXFEeH/GjE5l8+oCDIxs25mQPVa23l2BE7bD0SSAUG3EOAGSZaEK1QWk3dWMMyxgQtYsfkGkkAg6btzeifyX5ynItz5Z+9NtFgdt2aJjy2zb3/0SL8ui69J15O1XXe8dckjgny+OGhXeXXLJ8P4hh4Qlp0wJS5xySngXsmb/3OiF9e5RmfvVHS9RJ2yHo0kAqWa9zEhsSKgkNsiKh80CIsSbFSdb35AXFhPEKiFeCM4n6Ldl6YFEaHM6smimbepNFx3t/nTb/mZg4Lx5x1apq+o2AxK/7ewgt+4TTwzT3303DBg1Knxs3DhMTsL7Rx4ZPnbCCUFyMhJymeuUdUjesdZbsiqcsB2OJkMaewKXdRYUb7vttkiyaaxopGZ5J6YZZyAZFi+RrlGLQF6QN/85OmPG4MFhwOmnR7LuWHjh8MFhh4VFQ3PBCdvhaCIoML6NK0L8DBYJ11xzzdyMM0jMSLJFGWeQ8BRfI0v10tex5JQpkazDwguHfjNnhkVGjw7hhBNCSxP2PffcE8aMGRNXmhn1p02bFrbaaqva/ryoVKNHjw6HHnpo5j460IgRI8LFF18cp2vo8nbbbbdw9NFHNyzKlcPRKrbYSME2iQHvA04a/IfqAosPhUbVIiLf1qEEKxIWFPlowQ/Sh/CRunl/KaP3y2bypp6ihTHIHkcbm3HGosjOGBUJWW5sxhkLGxQK2Pd/zpw5nc4r7hC45qKZA/dLzke6R7V6RowIAyZNCmHkyBCGDQv/Ovzw8HEWIBddNG4zaOp+A2ufXa/NqEhsm3s14ww3ZcUVVwx77LFH2GabbebZbz1+AF5ae+65Z9h2221z6zz55JPD6aefHi644IK4APLoo4+G3XffPd6UAw44oOolOhwtC8j58ccfn4cEIbYHHnigZksNAcjNHPANCUslgrOLYlujDomLa3PN+gD1IJWrvMoCrEewVsFpJy9anzK4C5xT5SFFXX9WtD6y59iy9tyUZXZh1T7S6384N+NMXlnaCWFrO/V0pO6sNiNZQ9Yv7Lxz6Idp34svhulbbx2+9NZb4fPDh8d2P7v11tH5x56b+rLanBWtD89Ole1Vx5lNN900fvKgaFfCtddeG9Zff/2aF1cW7r///rDlllvWgrdzUy+77LKYw87h6EtYffXVw69//evMfZAVUqG8CiHfmg31iBFhqTfeCAMmTqwdy77vfve74fWDDoq2xIuPG9dJorXkY00BIRrUKPWi9VnY8mWi9ZUpmxetL69s1Wh9tbJLLBFmHn10WHz//TtH6xs1KoTPfz4MmD07chKDad65y0Tra3odNtOIG264IUrORUA3d9ZZZ0XToq9+9avR8P++++4L48ePzy1DR7BRxbozajkczQKIIZ2lCqgtFH0PyY64IJBDNNWDrCdNCsjAfx44MErhEPaMoUPDpydODH/dZ5/wUVQMxzwYMSLMQgWUFeNj2LCPvk3ckPmJHiVsiJpRL0t1YnH44YdHwv3a174WR0VG4BNOOCHsuOOOuWVGjRoVjj322B64aodj/gFVA4JOFpCokR6R3CRh85up+IDNN49kDWmviL73qKPC4pMmhUUnTAjThwwJD6y1Vtiy11vjaCnCPu+88yLpptOYFL/85S/DJZdcEi699NKow0aHd+CBB8YpyK677ppZ5ogjjghDhw6tbUP4NsCMw9GKwL08b+EMVQRkjnSN9QcSNsINOmZmm0jWX5s5M3xh0qQw57TTQn/M+Q44IPxh223Du6+8EqPTSYddlH0l1cGmOmz02zjydCXjDPWyeGi9E4syzrBtddh/L8g4w2IoKhGbcSbVYdfLOGOj9aUZZ+waQFGbs+6fjXbYlNH67r333hg20cZGyAPWI0jZP/nJT+I28X+5AUjReYTNzUwzXjgc7QDlYkzjUvPio0dmJioJO80487ETTwwd554b+s+1JX59//3Dyl/4QrQwSTOm5GVfSXWwnnEmNE3GmX+3pME499xzY+hGLErqgdHN3lTdbEZih6OvgUV6LKVSQJK87LJukJWCLDT4njlsWLQhnrPQQvF76Usu8YQEbYTKhM3Ij8qCD8A2kd92ekCnuvLKK8Nee+2VWccGG2wQpmCkPhdbbLFF1FmzQMkCCrbdLDhuvfXWXWuVw9HC2GWXXWLmcqRi+2EqzzeWJEhzSI988x/fK153XfjslClRZz39r38N//rFL8JCI0eGtw491IWfNkFllQgjPxKAID0yqoupU6fG35dffnnsXIOywhXOzfSAzaQwefLkMGzYsLDffvvVUhnts88+Yfjw4V1pk8PR0kB9gP7VOnkAfjO9ZjbK1L6T5HzccR9ZiQwZEh7fYovwmb/9LXzlmGNC+PjHwyeHD/8o5vVFF9UOVyYVwb6P6J1TlYUFagc7I06zrxQFa0LNYM36OFeq/81Dv3795pkt2FjezNSxMrOw507bbL09Ud1YU8U0PEDaZlQ79rqLzPZoc6PM+vp1dCd0VBOBTiO33tTpwOFoNey8885h3XXX7eS/oAU3nDD4n75On2d2u9I114T3Zs0KXzz99CgQKQwr+udPn3pqeOfNN8NiJ5/cadFM5fUbFaZg03Rp0dG+V7ZsWt6WVYqwNHRrXtm0PKTITKIrZf/yl79EqxtLlmXbnC46VmmzFh2VBi0ti66cLEJd4SqPJeJwNCE22mijGAbCEjYvPFKkUlPZxcZPn3JKdDRb6B//qAV3Yv9qq60W5owbF977298iidtFM1teHnuCjVdSJkWYLW/LlkkRVnRuUJQ+7MWCsvVShBWVLZMiLK/NniLM4ehj2G677aIzmQUkLIuDNCqfyBGHGSRL9iPJ4eZN/A2fdbYHnLAdjiYE03GkYczNFNMD6Zopusz6sqL2oaeVyzT64aeffjqGVeU3U3Xpj5HCIXjpjO1vwG9t842Uqm3Omx5vt21Z/kfizDu23nZa9n1Td9Z2VlkrYeddZ1ZZ7pE1XbT703uQ3q+iNlsP7apwwnY4mhQs7pPLce21147bLIoR0EkLkuiWkbbzMs1E/fWnPx2dPpiGozNFrYEuHCLC4kvOMNSl31pU07YWOmVpAlnZ/ek259FvBgr2adCpd66iuuptZ5VlMRXVSNZ++zu9Ln6jEpGTTlo2LW+vQyoRJTxOjy1aWK0HJ2yHo4kXHg866KAaYUPOkCZES/YZmfWBom/UI5A9BITEjjcxBMr/0rNCMlbnardxVkl12JCOPd5u27JIk3Khz6o7azuvrqplGSxYdLQSdtm6uVepDjttsz0+/Q1Z5x3rOmyHo40DQaUmZqhF0EtDCkjcfIAkOCtpo8eGNJGqIR/IXxKno/XghO1wNDG+/vWvR0nxK1/5StyGvGXmRnRLrC9wp86TsG3GGX5jfoa5WRqA39EacMJ2OJoYSMTElMdqRIGXJG2jh0bdgL71qaee6jT1h+St/hVA3DjEoAN/5pln4jEy87PZV1C7FGVFQV9LHSqbOrMo6FEWuCb07yqbxuaw1wHszKKjoyPq422Z1AknjbVt3Uy4d7a8vU7K2Tan7inooF999dVa2dQJx9aVOslg3WPb7IuODkebAm/h888/P3MfxADBQZ5rrLFGVI3YjDPoXPlGmuabYyFb9NgQDFK79KpI4DbjDHUqGl9WtD4sT1RWacpUnm8tuGVlnEF/bssS2qJsxpnZs2d30g0TOz/NOCOVTxqtjzAauPGrPJ6OKsu9Qf2kNqeOM5C1bTODI/VltTkr4wwEr7JNGa3P4XB0Hyz4IUVrISuFEvZCwpCLdfyQJQiSNQQDmeG6jeVI6gTCMVUzzlivyaoZZ8qUzYvWt2BO2TLR+mzd3DcbrY821YvWV+a686L1qWx31hCcsB2OFlCL/O53v4uZmbKgWB6QAiSDVApxQawQERIy0ib/YTXhaF20DWFr2uSpwhztBpKA7L333jFUMdJbmtGc/771rW/VpESm3JIQkcqRJHk/kB6RliH3NNgRZfTuUJ/d5jeDgSRDtpF0rVNJerx+cx67zTc6cquHziubbn/44YeF+/mN9C57ce2ThF1UVskLlPyAfVyj1Ck6tsx1p/ePb3v/9H9Xwji1TfAndEyeccbhcLQKFJyqTxI2oyqLIeixGhXKsJFQCjMeUl+J6+Bt9ja3K97qRpuhXCRwdOJp4pY+oxKh4a2gn+Ph9pVOLXib+wa8zeXRVTv4HksR5nA4HI7Gwgnb4XA4WgRO2L0EVtSPOeaYPpXp3dvcN+Bt7j20zaKjw+FwtDtcwnY4HI4WgRO2w+FwtAicsB0Oh6NF4ITtcDgcLQInbIfD4WgROGHXwT333BO22GKL6EaKy/s111zTaT9GNsOHDw+f//znY6CdDTfcMLzwwgvz1HPDDTeE73znO/EYwlRutdVWhectW2+7tJnQn7/4xS/CN7/5zRhVjnPvsssuMdxAOz9ni3333Teee+LEiaHd2/yHP/whDBw4MHr88bxXW221WmqzdmzzO++8EwYPHhy9sSlDJqEzzjij8vU7YdcBUbyIknbqqadm7h89enQ45ZRT4s1/6KGHYufbeOONO2VGvuqqq2JC1d133z0GXP/tb38bdthhh8Lzlqm3ndpMAHkyhA8bNix+X3311eG5556LL3U7P2dh2rRp4cEHH4xE0luYX20mTdlaa60Vvva1r4W77rorPPnkk/G5EwGwXds8dOjQcNNNN4WLL744DlYHHnhgJPDrrruuWgOww3aUA7dr2rRpte05c+Z0/Od//mfHmDFjav+98cYbHYssskjHZZddFrdnzZrV8cUvfrHjnHPOKX2eMvW2W5uz8PDDD8fz/+lPf+po5za/+uqrsezTTz/d8eUvf7ljwoQJHb2N3mzz9ttv37HTTjt1zG+EXmzzCius0DFy5MhO/62yyiodRx11VKV6XMLuBkgRRFompk0CUzymSg888EDcRlokjxzBqVZeeeU41dp0003D008/3a16263NWSCbCtNW4jm3a5uJMom0duihh4YVVlghNAt6qs20F3UCmW+QXInJTZ2paqLdnvOaa64ZpWnKMlbceeedMYnyRhttVOkanbC7AR4uIAu1Bdva9/LLL8fvESNGhKOPPjpcf/31Uee13nrrxdRBXa233dqcgikoOm1yGs7vCHA92eaTTz45po464IADQjOhp9pM7kj0uSeddFLYZJNNwi233BK23nrrsM0224S77747tOtznjx5ctRbo8MmsQRtRy2zzjrrVLpGJ+wehrJfHHXUUWHbbbcN3/72t2NSVSTHK6+8MrQjuttmFiDJEo4kcvrpp4d2bfP//u//hkmTJoWpU6c2ZQz3nmizymy55ZbhoIMOCiuttFI4/PDDww9/+MMuLcK1St+GsFmjQMrmuY8bNy7sv//+4bbbbqt0fifsbkAJO//+9793+p9t7WPKBBhdBQLGLLPMMrmr4mXqbbc2p2RNGqtbb711vkvXPdnme++9N0qcZPJGyuZDuw8++OCw1FJLhXZsM5nHaactA5ZffvlesRKZH20mZdiRRx4Zxo8fHy1USOfGguP2228fxo4dG6rACbsbWHrppeODvP322ztlomB1eY011ojbjMA8UCweLCn98Y9/jBmdu1pvu7XZkjVmVEgeAwYMCM2AnmozumssJB5//PHaBysR9Nk333xzaMc2ow7AhM+WAehzi/pGK7d51qxZ8ZNmlyHHoyT20qi0RNkH8fbbb3f87ne/ix9u1/jx4+NvWS6cdNJJHUsssUTHtdde2/Hkk092bLnllh1LL710x3vvvVerY8iQIXFl+eabb+549tlnO/bcc8+Oz372sx2vv/567Zjllluu4+qrr65tl6m3ndo8c+bMjoEDB3b813/9V8fjjz/e8be//a32+eCDD9qyzVnoTSuR+dVmfi+00EIdZ511VscLL7zQMXny5I4FFlig4957723bNq+77rrRUuTOO+/sePnllzvOP//8jkUXXbTjtNNOq3T9Tth1wA3mwaafXXfdtWYKNGzYsI7Pfe5z0fxngw026Hjuuec61QEZHXzwwfGhLr744h0bbrhhNOGyoE4eolCm3nZq8yuvvJJ5Tj5cTzu2eX4T9vxs87nnntux7LLLRtJaccUVO6655pq2bvPf/va3jt12263jC1/4QmwzhD5u3Lh4virweNgOh8PRInAdtsPhcLQInLAdDoejReCE7XA4HC0CJ2yHw+FoEThhOxwOR4vACdvhcDhaBE7YDofD0SJwwnY4HI4WgRO2w+FwtAicsB0Oh6NF4ITtcDgcoTXw/wF7vTwXTm7lzwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAFfCAYAAABqcfa6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoeVJREFUeJztnQfYHUXZ/ifBAKJYQGwgTaUISBFQOghSJYSgIISEJj2EIkgJoYQSILQQipSQUAWRhN576PDRO4gF+fMh0lUg7f1fvzH3+Z53srtn920557zPfV3nOmfP7uzO7M7e88wzT+nT1tbWFhwOh8PR8Og7uyvgcDgcjnJwwnY4HI4mgRO2w+FwNAmcsB0Oh6NJ4ITtcDgcTQInbIfD4WgSOGE7HA5Hk+BzoUUwY8aM8P/+3/8L8847b+jTp8/sro7D4XBkAteXjz/+OHz7298Offv27Z2EDVl/5zvfmd3VcDgcjlJ44403wkILLRR6JWEjWYMLL7wwfO1rX4u/33rrrfCtb30r/n7nnXfCWmutFf71r3/F/z788MMwzzzzhKlTp0aJfI455giffvppPM/7778fvv71r4c333wzLLroonH/n/70p3ieL37xi/EclGN0XGKJJeL//Pef//wnltP15p577lq9AOf47ne/O8tv8Prrr4fFF188/uY81E91T4//+9//Hq8z55xzZp6raJu2McLPN998tYHuq1/9avj85z8/Sz3SsrSZe7rwwgvH7Y8++ihMmTKldr/ffvvteH++8IUvZJa352ZG9Le//S3eX92/f//73+Eb3/hGZlmORSL53Oc+V/f+pfvfe++9+Ky+8pWv1O7fAgssEOaaa6669+uzzz6Lz1IvVnr/uB+cV/ev6DlPmzYt3u+8+5ce/+c//zksssgiNSnM7uP+/fWvfw2LLbZYZtl//vOfsX986Utfqt0/+lO/fv3qtvmTTz6J7eR+6/7xDtBPsu5fVt3+93//N967+eefP7aziJjSulikz7VK2b/85S/xXudJsUVluX/cqy9/+cuZ+4vKp/cvBfcD4dJyQ68jbKlB7r777nDEEUfE3xAyHR5ArNwoXgKIlA7HA+GFoSxEwDYdHGLim+O5qTxwvukA3Gg6EA9LxwOOgfS1DfnzEtuHwm/tt7/TbepCp8/br98i7KJzpdvTp09vd26mZvwW4RSV5b5ArHY/L6W2GWg43hJ2Xpupg93m/vGp12YRdpU2U2/7bLRPhFNUlvbxLPPun+6HJey8NkPYut9Z9y+vrAin6P5l1Zv2pecSYReV5Rjqau+ffTbp/bP/QVQMcAwOkB31YICz10qR1qXsvrJl8wi7qCz1tgNelfLp/ctDR1S3LUPYAkR6//33x5EVaUY3BWkEkv7mN78Zll566XgchExn1E1mZOQhfPDBB1HaQ3rixZCEwkvJPh6GJAeHw/FfAeW1116LM6zvfe97lXWzjl5K2Iceemg48cQTw9FHH93ufyRjpttIgS+//HJNXcJ0FAkAyQ3CZlRkCsix/GZaI9JHOmLkpWNC+iJz8O6777brpJzPbtOhuSbSPUCyzwPlJAkB6mfLoi5h4MkbqXWcnd7pP9pgVS0prNQEGJSYAgMGKos0bhh1tm3mfua1mbK2fNpm7q0tS71tO9M2p/WWSkptSNc3bPn0fnF/1WbqbOuVIm0z/cvW296ztM1I/ZoxSHq3ZREa8uqc1eZ//OMf7fqI1E26tkXaZgQRtZk+bmcMKZA8bV2oM8LRuuuuW5v1OboHLUfYa6+9dpg4cWJ4+OGH272kvFS8fEjK6B+RkOnQKP4h6FTCZqrLf0888USc2lGOqf4PfvCDWJ4P/73wwgtRd4u+G3Knswu8NNKBQUC8oEj5AMJFyteLxLnsS0VZPoIti/7aHs/sAWibcgwQAv+rLN+8mJA4QNdIe+3L/z//8z+1ejMDUVnVkwFLJMp+W0/URnlthoBUVlY9dtDjPEypVWdblgGUc5dts9pq28xzEsFQd0suts2QbF6buQ7XVD21X2UhXVtvCFxlOS+kaknc9pGsNqPCK2ozfVaARNM261j6J/fHDhBFbea9UL1pK/VCKBE4t8pyXurBfurs0nX3oeUIG+y3335hyJAhYd999233Px2cjgdBIWHohUUnnSVhs59OyxTP6jPpwEipkB6dfJVVVokEDgnbRTNbFtCRLTHyMmk/L5tdwEjLgryyoKNlkaSou5Wo0vK2LPXUPiRX7ol90YvazL3XPoiaAdEumqVluVZ3tJn/GfTs/rJt5tlTdwb8vLJsqzzt1z5IkfusdZWqbe5MH+FeI1DY2UJRm4H2afaoRcessrxPtI3/ubda4HV0LVqSsH/4wx9Gwr711lvDbrvt1m4fxIyEBdlCOJD497///fiNBI4Ojo737LPP1iRrwDcEDiFD+HRMJMQVVlghSuOyGnA4eisgaQQeZm2QfFWTNUc3EPZ9990XRo8eHadTEN+kSZPCgAEDavshr0MOOSRcc8018aEhQQ0bNizsscceueecMGFC2Gmnndr9x2ifTnGrYP/99w8rrbRSlJYtmTJFXXbZZaPqA0KGgJEUIGBUHnQ4vq0EYSUJdN4QNv8hMTF1RC3AIidtt1N8fmsbacdup/tlfZC1r965io6td279Lntue660bJV68t2Vba5yLh1b7570pjbX6yP2u15fZqbJzIt3AyCd22NTpOcqu6/e/rRNVfZnPee8Y6qWLTpnlxM2esjll18+7LzzzmHgwIGz7D/ggAPCXXfdFS699NKoI77tttvCXnvtFadj/fv3zz0vRMlioNBZb0XKI11jl33ggQfW/oek0SMyGDCgQLJPPfVUlKypA0SOhG0la/ttfyNhM/3jfJA2gwPnRT8qfZ+dgnJ83jY6xrLH8sJULWv1tfZ46XOtSsSWLzoX5ZiVMAiWqaf9rQU21CRZ9UrLFp2rXhuzyvKcrAqg6NzUU+dmJkbd6TdZ507LU1a/GeDZtn27qI3pfvTGVgedtrleWa6vbeqQ1jPv/smO3VpF2bLpuQTu00svvRTVJUXvc1ZZWw/b5hRp30/PC2wfS/fnLZLy/lqz3bzyWdemb9FP0kV6wa5zdTthb7LJJvGThwcffDDssMMOccUYQJrnnntuePTRRwsJmwdqLR+6AhtuuGG4/vrrw4svvhitOoBeUjoRZIO0jCTOjbcSNsiSsNP/JJ1Td/SbPCQk+mWWWSYuGFkdLR04b5tRt+yx6fH1ji3apsOmOmy7v6hslg67bD21IFm2jZ1tsy0LAaQ67LJtztJhFz07+5u+wf22Oux6be5MH7HbEG6qw6Y+ZdosW2arw06Pt+einizw8g0PZFnpWKTnskjbXKUssI5HVcoiwPGsihxn8sqzFsYgt+CCC2aW64w5cJcv566++urhuuuuiyMfEgOOLK+88kokzyIgsXBzebBbbLFFeP755wuPhyhouP2kYIHmyCOPDFdeeWXUp6G2sB9uNteEcJCQX3311dhBkBx5GAKjJSv01hpC4DhmHbT1ueeei+fiWnmjusPRytD6DgIA719qPuhosEXHsWPHRqka0pIt8vnnnx/N7fKw5JJLRtUFi4WQ4sknnxyJH9LOW7gYNWrULLbWWUDnjLTL+fMGDYiaRUYkLqQIOh11p+NJ/aFVb/sf3wwcDE4AfThTS0ZlK3U6HE2Lo44Kn//ss/DZb387675jjkFiicfwHmCmClG740yTETY20EjZSK8sUu69995xOrbBBhtklllttdXiR4CsUWGgSjmGTpHjIIO+XMibdjHKYzGCHn3NNdeM7uopkJAh2eWWWy7q3ZkRYG/N1IYVbzoh3/Li0nlRqfBNWQhdsTCwQHnggQei1C5VQ2oyleqxrA02Ur6uC1L9H+ctSnaP04hVcViHFWYEebo1Tfntta3zBtdMnV9S3R16PZVNpauisrSZwU5l0xeeskVtZh3BtlkerID22hlTek+Zvto2W50817TnSuvOsbbNqcNJkbMQdbJl01lZ6lyVtj9ts21jVptTHa1ts7Xn5lnU2jzHHGGeE0747/06/vhan/jcCSeEMG5c+OjAA8NbL78chZZ11llnln7uaGDC5qEfdthh0XJks802i/8hNbOoh9ScR9gp0LOtuOKKNcP9LNAxynYO9JXbbLNNuOyyy8Kuu+46y37IAYkY0r/xxhvjC8y56YToptHxyplGEjYvg+rH8SxWQliQJfo7gtYg2UvXyTVQq6gMvyF5bdtFTe6j3N8FyEzH8psZgHW757deaNphy0IK1vFDMwjASwtJi1zRuzO4qjyLVSrLS0y77KKjdZwRgdg24+yi8gyEKgspUC+RCiSQ6oZtvXkW1NHeP9tm6pJ3v2gf5xchpo4zSIbM5FSea6kspEkbpPuV4wz3UOdizUNluQb3UOVZSNd1UscZeW/aettr0yfoV1lt5l7RH/PaDCHTH9Vmzku/ssGz8tpMOSw8Ypu33TbM/eabYaFRo8K7//lPeH/o0DDHqFFhsQsvDFOPOCLMeeih4VtTpsR+wn1GYPHwxk1C2Ly8ChRjQaepYsrCS4yKYtNNN+2SeiEF//KXv4xkTMfKU7PQ4eisq666aixD50aipk28uLw8krDRf/MiQm4sykC+vJy8vCuvvHJUrWDfbaVMJPGsBczUKQKpjRcpryyDiRx7bBstbFnqkuf4kTrOpM4ZHKey3AcbUCtddGQGwj3Kq7c9d+o4A/nwySvLsSziWIsBW0/ObcvyPKzjB31Qaq0sxxn7LLgf1lmKNmn2lt4/7gf3t8xzTh1ndP/yyvIeMeOz75O9f9yLvDZzHhv8KctxJq/NEDtt0qLZu8cdFz7BO3jUqDD/OecwioVpRxwR+h19dOBs1IE20R9RLyLk1At85OgYKiuaZAbHByBN8BtpgIfEtOiggw4K99xzT9yHjfXFF18cttxyy9o5UFGg0hBGjhwZzf+Q3nAF33777aM08etf/zp0Fejo2GaPGzcu9xi9yBDmzTffHBcraRuSOYSNJC0Jm29Jj3zTURkMeLGRwmzITIej2fHpQQdhUhTJum3OOcP0ww6b5RiRPjMH3uXOmK85ukjCfvzxx8N6661X25YeGVM+yPmKK66IZDxo0KBIcIy8xx13XDvHGQjPSg1ILagqmJ4zsv/oRz+K5oHokbsS2I8z+mNiiBSdBSQQ1BqQNiZJSPvotpGarTONlbA5HumGD1NN2lZkDuRwNBvmHj06kjWk3WfKlDAH+uyMRX/6PpI5M1UEGIXNdcwmwobEihZ/IMTx48cXngPp2+K0006Ln+4GUjY69h133DHqyPMM7hUTmymsIt0hcWPPvfHGG4d77703rLHGGlGyRjeKRM20G5KnHOeVHhw1AfpOBikbXyHVwdpgTkxJkVLs4pfVcaPbVXCqrHMpSFBWWerKdFrBi1IddhpgyJalbQxOWpBKddjsQyVkF3Ztec6t88pxxuqwaa8cUtKyvPxWJ5vVZtsvbVnaZwfRVIed9SwEpETKS1pMgz+xXsGztqqJtM159w+VCH3MmovasuiRuT9ZaxU8Q/TOVtVoy9IfaZ/isac67KI2q/9pIXLuk08O8597bnh3332jDpsFx0VHjgzvEqxr6NBZytv2Pvnkk7Gfpgu3Flll7f0r4pu/FZSlz2SpaMuUTe9flfLp/UvBvo6iJWOJ1JOysfMmoh8LkXlAR8nLwEOjs/ONpC3ip7OjoyZwlCRsSIfj6GBaWOKlRMeLioT/8oIXpTpsSD7NWFFFh50GBeqoDtuWLavDtgkMbPlUh039Ux126jxVRYedV+8yOuy8srSPhcJ6OuzUOiRPh110/9Ljy+iw02wsVXTYeW1u5/iBlda554ZPDj00zH/88YFWv3HkkWHagguG+UeO/O99GDGiXXn6PwMZz5NZMn0iL7NL1v2yyHquZcvyzIscZ4rKcv/qOc7kle9Ox5leR9gAdQ2mhrwskG49EJmPkZ6XFomHWCQQKiQMmUPUkIEkAb55aEjCqFKQYunYcpV1OJoG06eH/xxySPjsoIOCHZLQYcfBMzEdhIzo77wbkCVqRI+R3XXolYTNiIvOfPjw4dEBpyhAvUCnIy4CpM2UGqAaAYzCSDw23rAsS/iPgSHL/tvhaHgcdVT4hPCqWftmStaAPs5CI1K9HGd4T5g95KkGHNXRKwlbUyxim1x00UWlrFGY4tDxrL4RFQBTa6aaSN5I1hCzJG15SzKtpUMzTWQ/x6JGyZuO0dnt1F9TTJF+mnEmRSrRUHdJ90hARWXTwQt9m8oypS8yz2QKam1wGaxsvYusBtI2Kx6FytbT+6X1Rg2isrQ5LyFq1v2ybWbQLQozYO3hAX3E1tvqbrOy7Nhz0y9s2XoZZ9I2s95i+0hR/I60zdwjtTkNjJWC69q6UGekatZ1pMunndxHpGwn7K5DryRskfbgwYPD0KFDo8239NNZwGLl9NNPD6eeemq7/6Wvfuyxx6KKBJ2VdF58K5sIkgfkrsUiOjcdu17GmVTXJR2sst3YBTe7gKTY3gJEq7J8Kx54mYwzvLx2sdQ60mRlnEmzr9h6054040was0UOKWqLyqJSsgtQ9drMedM2o4suk3EmbbN1KsnKOMPioM3cktfmvIwzDKh5ba6XccYOgtxTlUWvzv3l+WYtOlZpc1bGGfarrDLf2IVXnqMNFuXoGvRawhZpoxLBJBHTwyy1BS83sb1xnecFSJ1ulJqKrOxI0pK4IFWZAfJNOcgO6UTek5y7SjYRW7+q2VfyypbJOGPL2gwqZTLO8KKrvByRshxnsspyT7qjzWUyztiyHck4k9Xmshln8urdmT5SJuNMXpvLZJx56KGHoqStjEuKhV8UBsFRHb3eQBLJGsI+66yzZtmHxIZUja05i5OpuZyAZIJEh5MNWW6I2mcdbPhGikcKgdwg+NSSwuFoZqhfI1lj5cRg6BErux69nrDpVDj1IDERsMnid7/7XUzSwD7CxBI3O+8ckDFqBpx+kGSQPgjhqm/yPjKFRA3i6cQcrQj6Oe8AAopHq+we9GqViJ0KkpWGNGVECYRQ0SvyQRVy9dVXx9CsRbF9mUKip0bNwWIRek0t0MnAHomdaSNSCE43CiKFPhBdY+r4YRd27DbHWWk/NeAvKgtsWTl+WDtse3xR2Twdto7POpdAu2mz1WFLL602Fl07bbMtm3UuWzbVYaf15NnlXTd1PKp3v4scj7LqXa/Nto8UlU3bjDoPyddmiSn7nFPHo/R4ey6eJ3p36crp85B4GnkQYKdNCGXem6yAUdxnLLFoS9b+jz76aJYMPhZK35cn6adt7ojjTFZ5zTTyUhxm3YuycMKeCZLp4m1JXBPM/e64446w0UYbxU7Kg992223r6uN4uDwMXkqcciDivAw1fKsjsliJ3Wqqj7T6So4tco6pUraeDtseX1Q2z/HDHs9LZ89lddjWcSarbFY7Otpme3yWDrtsm7N02EXXtmVTx5ky9S7SYVdpc5YOu2ybs3TYRc8ZgswLngV4R3g3UCXy3jFwZznHQPTcK96NrCzsr776arxOnmMNdS5ynMm6XwIOR/UcZ/LKu+NMN2Py5MnRI+vHP/5xJB/UFqyg77ffflFSGDFiRDjzzDNj0CqmffUAGaCzppPROZFW0gVNpBA6Mx2O67lO29HqsB6QkBnEpRyrvAupKSGDo9QsKWH/+9//jkJGZxJ1NyN6PWEfe+yxkbBlewqRYtGBRCAPRvTP/E8skXqxfhUn+yc/+Ukt+A3nQLphENAiJFIDHZFOieSSlX7M4WgV0L8hawQi+QEwc2Uxnxkes1JrgQWpI8QgrTIr4P2c26gkOR4PZGVm7y3odYQt22iR6w033BAT9dIpnnnmmTiVwWKETDcsIApkiSf+SL0IgtbsjSkV+jk6F+e1sY4xAVQeSSIHWsKW8wVlQTpIMLW2usx0v7LGCFZnytS1yPkF3S711bXT7CtWLZQ6gjCbQFpS2VRiKlIpUSdbNp3G1muzssZkXatem5H0bJuto0fa5hSKNaKyaUyRovuVtjnVtdZTwaGqUFlg1wP4XdRm+ptts5VUqWNRthruT9k2A/wQ6Pc2dRjXR+0gM0bOSX21n7ohhUPIkDzXW3jm7FbZdHpjdpteR9ikL6NTMMornCvSM4SN+oNRG8kaQrUggw7OM+wrUl/Q2dHPQXSoRtDf0bHplMpEgoStjDNIEnRo/pNjBf/x8toFD+uwkpVxRtcGSO52YKHTpxln9GKk0fqoC/dA17YZYyB+1DdaUNKio3RyDDLsU1nawPVUHtd+lc3KOCN9Z1a9szLO2DZD2GT4ySqrjDNqc7royHGQQ1ablXFG9U4dZzgX9VJZjrNtZlamslkZZ7h/KqvFu6KMM2qzFj6Ja5PVR5RxRm1OHWfSNttsSMo4owEkdZzhOpQr02buH/0ZYcUOwtJPC1roZ+YpAUPPhwGB80yfPj3Wg7K9Nd58ryNsFjnoOBAqoR/ZJuIZHYwOTWdhapaa3jHK4xl57bXXhu22267wGkgOSAMsSNDZRCpZmUi0AAmJ8sJSHzol23ZgqJpxxpbtTMYZuxjakWh9VTLO0Ka8smWi9eW1uWrGGdvmshlnrJRZNeNMXpvLROuzZTuTccZmFpol40yy6Jh1//LarDg6DM60mzL8x/Owz5JzIwxw75GuU0Kmfu+++24tlV9ReIVWRq+zw+bB88AhVDoIHQWpEumXD50FqUnuwhZkficjTlFMDLlL4zzD+e+///5arGxJIZKw2S/JBqmFzpxOLx2OZgfkzMBDX1ccHQjfggEBYmfWwWwoNadjMPrggw/aqTR7I3qdhM2ozgeyZJSGvK2EjUTCFDfLuYX/SGBAMoMBAwZknh/JB3ImEI6kAUmwDAKpa7XMp5SMlUEDydlKHw5Hs4M+jcSOcESfz8qryvuCXXbWPt6PeeedN6qniuL+tDp6JSsw9abjoH74zW9+E376059GKQDdHZ0CwoXQIVvIVNNfCBY39l/96ldRp50VllVTb3lGso3+UAGbkLYhY6lApJeUUwRqBzwuOd4ufqUZZ4oyptTLOGN1sF2ZcUYLUXkZZ6zjBwNbmnGG9uZlnKmXMaUo4wwDJc+hqzLOWMcZ9PY8UzszStvc0Ywzcqzq6Ywzyvyj/pfqsLOCZ+W1WblQdf8oy7msmifNLEQf0j2xfeazzz6L5e1Ca17WF+4t6QzJkNXTGWfgEa7vGWe6CJATi3J0CqZqdCCkbEnYEDGEiYoilbSXXHLJsNVWW4Wnn346uq2n4AVEHbLBBhvEslo0SvW4/GclbMCxPGgWkpA2UgeLVss4k5U13TPONFjGmZI67Lw2p2sA6KYZhFLHozyHKPtcp02bFvtWahBgj+d6kD7PeqmllmpnmdIKGWd6nQ47BenCrrvuunb/4TBD5neQlU8Oifz3v/99zb3cfpB+6cyslFvTKKQWpBqNuupE+kbi5wXkZaZTlkmq4HA4/gvNOPigUuH9aUVLkl5P2EiFWnDkA3Ey+jO6XnbZZe1iRghIt8QYufPOO2fZB0m/8MILscNoQVFEzqiP9Iy6hWvpm2OQAJEOslbIHQ5HPnhHeYd4l7UexbvUigv4vVIlYqdbkCgfpubSYSuWb5ZKxCY/2GuvvcLqq6/eTgWAxExZqVmkA8MqBTNCptfYkUL66aIjZM8+pnJWr4nOizppess+xR3OQuqAgb5cwfspWzQgpGVRU6isHBbyQNutQwsvja13PesaO3VFYrJlmUbmTTGz6s1LrHrzu8gMrKjN6GCLHFDSNtOHbL2LAv1Qzpbl3tqyVp+v44vqzTTctrkoy05alj6mstZ+O69smmXH1rsoQ3raZvqULZtm2Smqd1tbWxR6IGo8JnVe7gPvbSt6D/dqwqaTQAQQGpIuHQ+CfeSRR6K7+tixY6PEnRXgBbUH9tikGIO4bSei49Ox0JVDjnKK0ajP/3QwmfUBjpHVCtM6OhsvHYtaLLRwPUkMDAQ4NhRlX7HEyguosnxTPy0g1cs4gyrHSiqQSFHGmTT7Sirp1Ms4I/0ebbFleQb1Ms5YDztbVm1m9lIm44xtM98cX5RxxmZf4X7Ya1PHNOOMJTSbZYd7YsvSR+plnLHnsmXRldN3+JTJOMM+22b6RVHGGWLl5LXZPmf+t4uOqrfMZtM2kwjEZmJKF5M/NFl2KCsrLDsIUF/unRN2C4LOwGIKUrE69IUXXhj++Mc/RglFHS8FBMKi4y233BJ12VoI4XxIJ8QSsRHMlH0DYkQi55tj0VlLwkYKZx//MWhQlxVXXDFuQ2x2xbpq9hVblpe4SsaZvLJlMs5Yz0cIsmrGme5oc5mMM3lly2ScoV0qz+8qGWfoO3ltLpNxxpaFdKtknMlrc5mMM3ltThdtq7YZpNl8vme2uae8f9wXBhUG4rxwra2AXk/YMl965ZVX4sPH/XyXXXapxQ8uevB0EswCCclKijGOpdPQsenwSDWYFiFlMzVm9ZppvXWgEVEiSUgNwLFIViuvvHI8D+UlKTkcjv8DQgAzU0ibmSezqKLkw82OXk/YSLRIS0iZqEF4+BB2lvSSBcz8fvjDH4a77rorrL/++vE/VB6y3cWBhoGAc9G5IPM8N15J2nwziEDakDiSkRO2w5ENJGqEHNSXSOutbGHV6wn7yiuvjJLyo48+GqP0kRYMsi47paLs/vvvH/XZqEG0AAlpow5Ayoa8MfPTPhncZzkb6JvFR6aJTPGoC7bdWpRBFWEXs7IyzhRt18s4Uy+zi5Clw7b7eXnyzpWlw04dfux2Wq80rGZR2XQbnTT3UCqRKufOyjhTVM8yGWeqtDnNOGNR9KyyMs6Ufc5ZGWfKtpl+yqzR6rA785z/VlBPZW1Sn2JGy71OF1DltMU9yQPvhKJtZiGtpwVrRsokn4WiRdl66NWEDTHzIT0YpHvyySfHFGFVkwlQBtttsqsfeuihtf/RSUNqdHiOAWkGmqz/srLTIKUzACChE5WOKWBR9pWy23kZZ8qcu57jh16OrHNl6bDr1btsvept52WcKXPuvIwzZeqZl3GmbJuLnIPqbedlnCnT5ryMM2XanJVxpkqbq7Txe+Z9Aagn04wzspji+dtgWSkYWMtknHHHmR6EJONJkyaFtdZaKyy//PIdzvS85pprRhUGahXrSKPAT4QsZWRN7boVb5qXESJIR2WkBPTrSOgQI4OAxxlxOKoBqRfrE943Br000mGzoDJh33fffWHzzTePozUkg1SZLuINHTo0ehshteECjpqhLK644op43rzgSl0FPBWRNpCySPQJYYtcOwI6AZL6ueee227ayujOoiEqlwcffDCqSBTzmG86Eb+ZXr388svtnG34plNxbu4nU7h6dqoOh2NWD0jeHd4heAt1RTpbaBZUFtUgDCRRMrBkxdI44IAD4gLcpZdeGk3dbrvttminzI3q379/4bmZ5kN6kGd3Ah0X1iBc6/jjj49Jd4umR2XBAiSRxAj8hPu6BVNDiBsCRkq2MSB0XaZvTJnZjyTOdIypFb9RW3A/6XiQedHCijKolMl6koIBi4FLU8E0Z551IknPw3XQvatsGmsidUCx5WXbrHpn6R2LkLbZ6saz2mzXKNI2pw4+RddWVnCVtWmsyrSZ56t6p7O7orI2a0xH2sx7nNdmBZcqarMtm3oU2rLWVl7ntmXT2WK95/xh0ua0P9prITyS0QnVhFVPcH2EINm/tzRhb7LJJvGTB6RIItoRJQvstttuUepEwiwibDrboEGDwtFHHx3VCt1xM/VwTzrppJhwF9fzrbfeOpJhVlbmqqATMGBpAdJGrRMhYeaH/lMZZ9ROSFiLUnLmQYcGMfOhoyKBs7CC67tNX5Y6kaRZqDlfmnFGL28arY/jsJSRU4ktq4wzItN00ZEFTPapbJqJhHqrrBYd9Uy0mKqy1M+WVcaZsm22ZZVxRm1OHWd4qVFZZbVZGWdsaivrOEMbKKeyaZYdwoWqbFbGGUhFZTnOls3KOGOj9XEuK2TYeivjjNqcOs6kbaYuacYZ1Tsr4wx9u0ybFa1Pi+SKYpfXZr0X9h4I06ZNi+9HXpsZOOmParPys8qL0jpFFXlyNjK6XBmKqzbBlJDAkarvueeeqIM97bTTCsthy8xCACZ1EHY9IBFYqaCeIp8HjaXF5ZdfHr833XTT2CkhbiTbvHT3VcHi4q9//etw8cUXhz322KNdfXlZMP2jA/PS4Y2lRRI5zvAioKuG1BVxjc6tLCDMbvgfU8KiaH12sYQBqaPR+ngmPZlxxta7asaZvDZXzThDe3oy40xem8tE67NlbZadqhlnbJadrs44Y+8fwgLCWV6b60Xrm3vuuduVtTNj9T2bI5PjGcwVmoBBjoGqWdHlhI07N1I1Ixsdigd9/vnnx2wteSAry7hx48JTTz1V+jqjRo2K0ng94ELLQyKpLt6DxKimI5JQF3VIV5K1QJKDq6++OkoLejmVcJTBC3tRXlbujTXnQwqRhK1kuEhwvOT8x8ImZbPimzgcjlmBEIBgxkABkTd78t5uIWwS3SJlQ1YsUu69995xdCdGdAqIiUBKkHqVKHWYz6F+ECC0LA8nyA7SQ4Xws5/9LJIdEhT1UQCmrgbnZMaAjlwekJIAmKYx8lOfNPiTlbCV05F6sg15MzXnOLcScTjKQ+kAleS3mdGlbz5TqcMOOyyayZGRBTB1R3LGxjmLsLmREBGWJ4L0mhATetssUmWULDNSIsUSCpUFQUKbWr1ydwJpmMXTdAES8pXjxu233x5/A6SAVMJm6scUHB0fKgOmpgwyCvbP9JbjiAKYlz0k3U4dP1Idto7tSMYZ9iHF5GVfsY4facYZhQgoyjiDblULc6kOO3UqsWVTx4/OZpyxOmw5Hln9el72lTT4E885dTxK71dRxhm7BpCWRZ/L+9GRjDMcx/3pjowzWY5H9vii5zotWQNIy9L/eL+lkkPXzrGcj2/WUFApatEyL2MMdUVViQBo9d8p8sqn969hM87Q+bI8i3jYeau/hBJFbWFx+OGHx0aNGTOm03EB0owcPQmk63XWWSf84he/aOcxhV5Si4zKipElYSv4lHR00hHzAqC7U0ou9nvGmebIOJOlw+5NGWekwy5yPMp7rtNm6rDzMs5k6bCt4wz3q+g94Z4yAHNNVKfcu0bLOFOZsG14TcAUHwmalx7CgaDI1qKOiY0zC3CnnnpqrcyQIUNiY9BD8wCQfC30YqX/NxuQQLB8QVduFyAB0iKdlxkIFgw8YO5fFpAwkBbo5NwbhaeE7JGymn2a53DMbnxgPCBZlLSmg42EyoSNWdp6661X25YeGVO+CRMmRMcX9MsQFaQCaSNpWsJCumxWs5qqwASSBU67AAkYqJDOyA3JyA6BIxlYlQgmSJp2yQkJ9REdS+FZ+dipqcPhKA/eO9RFvItIy43OS5UJG/vqIscLprTjx48vPAemfkWA+FsFeQuQAFJmOqy4BljWQL6M8EjRMj/iHEzFkQIYBNFjM72F7CFxG8kP8k+DyyhjDeAcVby85FQCOK/VH4KivoD+knqrfOqEU+TYIT2nylbV+zHoqSznKZqFpIG+bJuZ0luHlHpBwaTztuXL3q+0zfW8WtO60Gdsm4uy7KRl5UijKX1RPdOyPFdb7zTLTtG5uLe2bOppXNRH0jZrob5sWWanEDTvXbNYjri5QQ8tQBLbOssDEoKmYyFJP/HEE1HvxjYdkZeI/9lGFUXnYj+qE6RsSAmy1kIN2yzSQKpWVwnZSXJAdQXpK+NHvYwzui7gGOvkoEVHq5NLs6/Y8lkZZ+zaBucWMds2A/SW9TLOWFWdbTNkzUvNQlyZjDO2LDMb61SSlXGG86ksZJXX5qxFM86nRUfuhS2Lfj/NOFOUWciWRQhgtqa0X/Uyztg2Q3qULco4gy+D9ZLMa7MyzlgSVzYlQP1tWYSTNOOMxYdJlh1bbwYo3gf6dNaibdpm3q96nr+NBifsHgKmjVkekIAOq7RGyn5jFxsVrQ+VCQshLK7QMencHCspTo4nvJjpYoiVqnnxiqL1pbHA88qWyTjDwKHytmzZjDP22jaDCqiXfcWWhayLovWVbXOZjDOKe56WLZtxJq/NZTLO5LW5TMaZvDaXyTjDvcxqc5mMM0r60ZGMM8CWtZ6QWdH60vLUi/Uh6g/hdzT4W0+hsRU2LQQ8IIcNGxYXYLMA0SI9IFERUOuZZ56pBYHCjRiHGTqjzVYDMSOVoxqBDCAhOnuzTO8cjtmNOeecs5YsW7bajQwn7B7ETjvtFEk2K/C5VCFIzkjaxLxGEkD9wTZ25EhIcuPlf45hG3ULUgSSgluMOBzVwcyV9wzVDQJRng317IarRHoYZLWBuAk5C0GnpnwsPkLC6NcgYKujzIP02liQUPall16K/zN1Z1qcBtKyAwbTVes4k2bSKMoOgv6QDl4244z9rbCXsyPjDGoGq8Oukn0FNRCzmbIZZ+xvyjEgWx0sz6xsm7We0ZE2pzrses/Z1ov+w7O0OuwqGWfog3bxtWqby7YRpH3E+oXUa7PAwice2iussEKu40xRxhnayj3zjDMtAIgV+2lUI0sssUSm1QEvJdENCUzFg4eQ0xRi9lsvsSKX8VKiV4YcsCJROEnB6kKzdNhA+1O9qd3O0mGnx1O3rHNl6bCLrpXWqyhIUL3tPMePMm3O0mEX1TN1/Eh12FXaXKWN6XaWDrvsubN02GXrmZVxpqee8xwZOuyiNtNXtUiLVzbCTz3HmSwvbM8404ILkDfccEPuCIzEitMQ0omC1UD0UoXoG3MkvhXAiuPYR2fhHPxGYk9Xweutiqfxiztatt65qpStV74zZevV09vc+m3+6KOP4loRAxrvTSrAlKlLT8AJezYAqRfnIpI85IFFRqaxTNux/rCLjfom9jgSOFMzZa7hg3pD5lTNZLLkcPQ0pszMto6KDKGn0SNhukpkNoHECXiFEvs7zbADyWL6h2WJXNhtzGAbawKVAmStqRnfSO5M2ZnKQuBpstkiSCctHW3q+FEEVAW2bFFWnCwoYTEom7Xe6h2tXrmM7l+gjbbeqeNHEbiOLVvV6xTJTmWretmxzmHbXC9bS1Zm7460GdWOLVvVKsm2uaoZ3b+TNlcRSNI2s0ZEP0N1kWYKalQ4Yc9G7L777lHSxtrDjux0IlQZ2GezQINjhvYjWbONnhqS4iWVQwXH0oFZbEFfCZCy2VbUNqIf2pckK+MMliZ6+a1DCoslSCN5i47ozCmnsnIAUnmcLfIWHXkRWZzSImyaiSTNOKNQszaqm9UZZmWcEXDYSTPOoIdXvRkg04wzlmxstDl5y5Vpc7roSB0UviGr3rQJ23ttqx6K1sc9QS2WVVYZZ4SsjDN5baYcZCZkZZzh3pVps9KJaeAXWavNaWahNONMumj7ZtJmW29lnBF4VxStL6vNcqqpKhzMTjhhz0YgKZOw+IwzzghHHnlku47DC0LnpsOvuOKKcZ91/EBNwoujRbtUwoYIJJXjuYabO4THy4HXYKNmnLGLeVUzztiykEJHM87YNnd3xhnIJ6/NZaL15bW5asYZ2+aeyDiT1+a0XlnR+ubPaXO9aH3pudnHPVHKM/pfy8UScXQd1BHJhHPTTTfVYogLdB5eOMVcJu41pMOLgnSGdJwlYWPWRwo0kSwSM043dOZmzRbtcHQHGACUkBdJXXF9GhVO2LMZdJbf/OY3MesOkrRUGQLSAuTMZ9VVV43ELAmbzpYlYSOVM3VEwkCyQWJCqoG0cb/1hUiHoz0gaYQjhCBmFDaxciOhseX/XgLssU888cRwwQUXxGkoelz7wQOLqTOjP1NMdHEiXb6lStE3hM552FanozMyHbZqF4gdfaONkGb1ytJN5qEq8ae6QrvdlefKQpXoc12JonPXCzxUr41dee6q+5uhzX0q9hFmtAhMCDVkfq+yiNtTcAm7QYAkvMoqq8RUattuu23mMWTmefHFFyMhs/jH4qNUIoBvbduFIBZf0PshaaM3hZBZfFS8bToy8RQYDFCnILmj16Y857LR9zqTIozfegkUrU+R61gUpD5VUoQBm+IqL10Wek70vXkprrLO1VUpwmyEwTRFWFa0w/R+2UUzW88sT1FblrbST6TPzUoRltdmWVNoIK+aIsy2OU0RpkVb632bls17rtMyPEXTtGjoohVcTZ6OWfcvLav/qStt43lyvPXuLJsiTPev4VOEOToOVBnbbLNNVI9YMz0LOgB6aBL4shgFyVlViP1mcUWRyeh0dGIWHpEiIP3lllsuvuxIE3RozseLSP5LOeBQXjFNgKcI8xRhefevGVKEFbWZvocAwX6t+TAgNX2KMEf3gRdin332iYkOSJ+W6tDogBAanYm0bHR+SEiLjpJsJElIAuDlVhhJCAcJAOJgPx2SFx9S4uWShIIkwwtZxQ7b4Wg2TJ06tbbeA1k3enhVJ+wGgkb/gQMHhgsvvHCWPJCCplssQlIGyeO7l1wSvvrhh2G+006Lx1gnmy/w37XXho+23jpKRujDkbKRcpRNnHCu6NKVnQXLFaIAIu1L5QF5VyFwXgamf7Z8WTDw2LJpJpJ6YPahspynysq/prSqcxUnnLTNVRxSGFht2aoR45ASbZurOLTYNmuRuixo4+xq88emLO1PZ3dFUNwQJOEyruiNACfsBgMETKIDJG1IlCS9KehcqDcgsWuvvTZKCF+HrE8/PbyLfnXQoJru+qtnnhm+dfbZ4d8HH1ybkjMlo3NDihAbkjrfdGAInOuiw2bhhWtA8orVjdpEU0z06LLt1suHFC9yhOzQK8rRATJLM87YBU7qIR22Ig2qLDOLoowzDDR2wYkpqSxueIk5V17GGa5lM5EoDZsAieRlnFE7yrQ51WFrnUH3j3thy0IkRRlnpJ6xbdY0HFUI17IZZ+waQFGbeb70h7yMM5RlPSWvzbQzzTijwVptthlnbFlmgjbjTBqh8P3332+XsYdzq6ysPARlX5IOO20z7aGPWDVbo6N5atrLSJtM6zvuuGN0qMnSo6GLhHjo8ET1m2/vvQOh1+c//fS4n2/Iev4xY8K7++4b5hs1Ksz3pz9F8oWwkaYhW4gLcobU6Ph0Xum+FZeE41GToDuE5CBPjqcsZYoyziDlab8CUpXNOANx2HPbTCa6T3llgS1rr10m44wtS/urZJzJa3OZjDMQo722zRpTJuOMLcsAWCXjTF6by2acyWpz2YwzeW0uk3FmgZznXCbjDIMUAyH6b/pEo3s9ullfg4JYvMccc0w090sT3woQLR0MqfTmm28ON660UiRnSLptzjlrZP3oRhtFSU2xRZBaeClQi+Bsg0QD+aIXTwNMYTXCC8G1IGt+o0NXfBOHo5nx+c9/PhI4Axnmsp1ZEOwJuITdwNh8882j2uG8884Le+21V+Yx6JuZ7tLhiLM9/+DBoe3ss0OfqVNDW79+UdL+/muvRWsCJEOr24aUrWt6mkcSIE0zzVTUQK7FFJX/2Jc3mDgczQTeAQQQZq0IM8wYGtFxxgm7wbHvvvtGXTJu6VtssUXmMeizZS/9yWGHhc+jI51zztCHxZ9jjgkhx667DOi0nB+i1sIMUrZM5bQoCXHLprsnMs50JhMJLyWSlFQiVc5NW23wp3r1tL9TO/aezDiDnp31CKlEqmScoa1anC5bz7zgTx1pc9k2ptuspyjjDP0MIcMKGEUZY1jHQY2TN4ssyjjDWgH9yzPO9FIceOCBMa0YemRyO+YR64cHHhiWuP768Pw224S5jj029D3uuLD4EUeEvq+/Hl4bPjwzWw3lFK0vL6sNQGUiNQnQwhG6Pzo1v9EBsu0ZZ/Izzlg79qpt9owzoUMZZ/iPmSrrLfwnO+6s6wr0jzJ22D2dccYJuwnAAuGxxx4b9t9//3D44YdnBllf9JJLwuLXXx/e3H330O+AA2LnfGznnaPKZPGTTw4BB4ttt611fjotxMPiIedjsRFytaoQbLFxQrBOOAD1yiuvvBIlbyQRyEtu86kXV7NnIqlatt65qpStV97bHEqVRdJmsGHgsLlAOxtTZ3bE5HHCbhIQUwT1yEknnRQXI1NJqc+MGeGpgQPD9F13Da8//XR44YUXolT0uaOPDn//+OMwzzvvtJOcFS8ZiQOpEb2d9Njs17SNY6xkzTcSBOoMuZPzIvBSMAh0xu3W4ehqvPPOO7GPS8jhnUBN04j66TJwwm4SaOqF3uycc84Jw4YNa7f/zzvsEEl0wQ8/jFN9pqB0VKbh/9pvv7DQUkuFhY2UjM2qNetDkkYql202v+nYynEH9M3UGkJnEEHKRtpGUmeKSVnZUncka4yNJVIFSPe2bJXAPbTF1ruKjpHr2LJVbXo7c78YTDvaZp5tR9uMPrhR2txWIOUqbk5qugiJ56krGh1O2E1G2oRhZaHvxhtvnCV+tgB5KmWWAizxUiEdQ9CY5KFLhdjp/GzTiXkZOAYypzyStNVdcx50gfxef/31w2233RZ1fBAFBMCijjLQsLCHHg91iZwoMCPMW3TkepS3zhs2Ewnns1JR6kTCNuofgbZbZxf7kqcZZ7iftENZaai3zThjdfmp44wCcKmsHImy2gwpWscZ6qSQt4AB1palnpr1qI02+BP1Su2urbOLXfRiBmSDP3Ecji+qt71fDH5FGWd4bnKuAdQxr82p4wz3ndmc2kx9bFmuy4wtL+PMG2+8kdtm6mcHHsqiquNaii/Cu8F9bcRIfN1C2Pfdd18YPXp09Biis06aNCkMGDCgtp9OeMghh4Rrrrkm3kAWlZAG89yswcSJE6OjCDeeG044UcWIdsxK2kcccUTYZZddogqC4EwpIDJeEEiQ/bwUkjIgUDorRJnlOINELWle6g2VZQGHl1MvzMMPPxx1g0QX5IWGEHRdpHDOR38oG/yJl8t6GFoniDLBn2xZ6t7RjDO2bFdnnEmDZ9GmPGeXMsGf8trMQFAl44wty3PkXnVVxhnrOEP7mJnlZY1J65UV/OkbOW3OCv5EH0QQYJCgPbSf/m6tfFqasBlVl19++bDzzjvHmBcpDjjggHDXXXfFjOB0NqQwbIjpLP379888Jzdw+PDh0Y4YqeeGG26IVhF0io022qhjLWthMKCRVox7dNhhh80S+UzgZZXdNOFUFxk/PrTNO2949Ve/igMj+3mxeYHmGj06zL3AAuHulVeOUiUDM8SCNML2Qw89FFZaaaVoYsgLRGoz9jF44GkpCYzv9dZbL0rilO+oisPh6ArMYZJ4yKORmRj9s9G9GrvE03GTTTaJFgtbbrll5v4HH3ww7LDDDmHdddeNhL3bbrtFgn/00Udzz8mxnI8s4ZABi2vE0Lj//vurVq9XeULiBckiZF6wHQY/xYHmvs4z77zh+5dcEpa95prYaZFEkFYWufjisOLEiaHP5z4XyZuOjOTL80MqQbqSSRQ6a6TJgw46KF4f6QWrET6EbGW/FnqaKUaDo/d4NP7pT3+KM8yqAcVa0jV99dVXD9ddd11Nsrv77rvjotSGG25Yqjxl7rzzzigRrr322rnHMdViSmk/vQ3cUwbE8ePHRymCWUyarYYPZAo5v7f33uGfw4aFhc8/Pyx11VXxvx9ee2341jnnhA8OOCC8s8ce4Qc/+EGcei677LLxm/J8i7Dp9AwESCo4QKCfZNYlhwTqwQDB7MiClwPXXyF9YcqYgtlj0mSpnZGWqiReTa9TL4OKPXe9Y+tda3a1uSfPXdTGtop9JKsMs3mEF9ZrUOl2B7pTcu9yEWjs2LGRRBRIiAdw/vnnF5Kv9JVIcxAxxHD22WeHn/3sZ7nHEy/66KOPDr0dP/3pT6O6gvtOxpq8zoIOD2L965Ah4bMpU8KCY8aEr559duhLPOA99gj/u912jILR9hrQmRVFDv0kv/mmo4Pbb789SvY8Y6QWpHG2lXGGhSeOJ4YJqhNUI/x++umno54RvSZkLz1omYwz6htAkfuqZJxhkMnLOJOeq0rGGTkeZV1bWYBstD4NbmnGnjIZZ1TPrsg4k9fmNGNKRzLOqM15GWesDjkrW01RxplpxluxXsYZe//0PBXrnTZpwTJFev9aNuMMxMFiFFI2Okx0oXvvvXeU/jbYYIPccrxMBB/ihUXCRheOZIi6JAuHHnpoPEagI1hvqt4CpAX02AyS3MM8cyWRQgzn+ctfhm+NGxfJeka/fuHlX/6SHbOUiWaCCy7YrqwASaNL18vFb9QjHA8h8yJIV0iGHIiKQZw6om7hRWL1XhlTPOPMrGU940zXZZyZMWNG7J/8XmONNWLdsyL/Cdy/ls84Q0UhDyxHZHKGLhoiJldhEWFzI9V49LNIaEjReYTNDa8SoL2VwX07/fTTY4ox9MipOiLLK1JkzTfbf6lokQMRSPLhBWSQhdhYgOSFQfqgYyJtiCR4mSB3JCHKezYbR0/g/fffj+sqrNcoRnqzoksVWUzvFGzFgpGuqt0jx/sLXR4MjFjasBBYNOWKLuwTJoTXd9wx3HPLLfGbbf6vAiQfBd9XAgSsSJC0kYjQfbPYjITy+OOPR7KmbyBNsqZhbaZBlu4RAQA1CR+pYsqC41W26uIS03hbtkrfRQq09a7ikJK2uWr/b5Q2V4ngyHVs2SrZaoAtm6oguB8sMHIfEWpaIRxwZQmbaavV+6CXRIJGmc9Lus4660QLAk397r333nDxxReHU089tVZmyJAhcbqABA34Jh0VLzo396abbgqXXHJJ9OhzlAcJdHffffdoxYN+3+pVU7KWRK1v/rfbVcDUnOfPC8LzRrKGmHmWvESoOZCq+Y3+kAGFBUvpYNlmQZIpt804g+5bxM7LZqO8pY4znN+SPnpWTbs5DulfGWdSxxlI1WYiQRrT9F+pyvIyzkBONuMM98DWGyJR2dRxRtnDbcYZW5Z7WpRxhvZYYrVt5plwr23GGavDTtvMcbbNPMO8jDO02Wac4bx5bU4dZ2ijzTij+6eyfOdlnGlra4t1sAOCLaukHtJZ06e4H7J0agVUJmykJexsBemRMeWbMGFCuOKKK6J+edCgQfFBQdoklbWOMzwEewORzrDVxssJosceGztupviO8pCuD9I74YQTYqAoq/Ml3ogla0Hb7O8olJkGAlprrbWipIRUYzOwQ5A2gBRkI4cXdMFWLQbYxkxQSHWOeTpYIa9smYwztiwEVCXjDPdC5enbeY4zWWVlOpnlGFKkp6/X5jIZZ/LaXCbjjNLWpW0uk3GGPmqvbbPdpG3s06dP6TZzL2kzumvKNVs6sCxUrj065SLzGqQpzMyKcM8997TbRiLk4+g8eKGxaafTo9fGY1QSB/FG8tARyToFLy0Ew8CL9EcMb14QWZlIkkTag/SwGMGZShJTM9rFOhob/fr1iwMkgwizFWYFSOTN6DQDmnu4ceSSNmonyPLKK68Mv/3tbzOPIxzAz3/+80i0EGgaa5uBGTVXFXC8ptCouZgCox6RWaCVsJG+kH64DhJYXkB4h6Oz+MIXvhD7ntLkNevioxN2iwIJYs0114xqqlNOOSX8EtO9BEi2W221Va1Dn3XWWe2mrugHOyKJQNIy0UOqweKHwUPBggAkLRMsyBxJCMmb6zF4oItEN2qvLx0uSLPbpNv22HRbdsRpxpm8c2PPq21lnEH1k3XuonNJh51mPcmrZ9a5LKq0WTrsNONMXpvtPgZgfktnnZYtOheqMWZbdjGxapvznkW9cynjjGz3BZ7f5MmTYx/N698QO/dKZpEplE0pq7zssPMWyqsurFo4YbcopOtkbQHbeGK6pN6mZGXnQ8e99tpro510FSx20UWhrW/fWdQpvCCr3HJLeOvGG8ODa69dc1gBMvnToiLXVLQ2CBzdMItlSP3WTlskr20Ghbx99bZ5Ea0OW44o2m9/p2WzdNjptfLOJTtiq8OuV++y9aq3LX2uCDttc1HZLB12Wpe8ejKL4rlaQaBKmzvznPv06TNL1nTIksELj14GsNSOXaDPFtlhc520bj1hh90aS6eOXNLGyQDbeDLDIEHz8tHRZIIJidAxfzUzIBQdURKAJEG2+T81UYOss0wCZY0ydWZEvk033TSWx0acDg7ZMT3lZaKOvBxsI7Wix2YRCXLhReOl0wfod9G+Mtv2oxc6b3/RvqrXqlq2p9pctQ3N1maAIICETv9CdccgVrbOVftMmXvQEbiE3eKAEPkgZaMeYXEXciQKIp0OKZOpG5If3xAqcVyw60Z1gFSFtMA3koFCseaZBFrTwTcHDw4LtbVFu2sk2ieeeCJK0rw0SNBKDKupJYQNmfM/0kme66/DUQX0W9ZKWEtJPWmbDU7YvQS4g2Mjv/3220eTSWzc0Wvj7AKBEzYVc01IcsUVV4zTUnTgkDYLk7fccktcRIS822X9NqS96GWXRc9JazoIEcs6BB02UjbX44NeG2Jm2olqhP3UA4m/ao5B6mR1hlWCLDHjYOqu8jY+Rz1wHVs21ZfWA7MXla0qeXWmzcyeOtpmObV1tM22bNU2TzH3q16buQ6hERSprxVssZ2wewl4MSBH2UlD3qeddlrUKeOowOeRRx6pOafwAkPOSCfnnntu1N1CrGzzkmCFgidjTbKeSda4u+eZCPLicE7A9Vj44xz8x/kZHJgN8D+qG4ge5wcWrVDpMJDYTCS0SS8sL6bVlVNeZECdbVAprsO29LmUxT5ajjUKDyuCsIlbs4I/QSDSdXIem0GF2YWQOs4wu2A2oYWtNOMMUqFiXqjNVv/Mgq5tc5plx5pJpo4zHMezz2tzmnEGslMbqTP9Q9vMuPLazLl4FnKc4b7TLpXlGaSZhbiH2razrOnTp8f+aRcC0yw71juUxW5M+AiK1gpkDZywewkgL+KNa9GMzoyzEvptXoDtttsuSuEEamJBRskNeHnI2s5LIc9VRVO8+uqro4PURo8+Wio2iQiWFxjnKGWc4TpYIGjKKrMryNCaFjIbKAr+ZBdNIdGOZpyxZTuScYYBqGzGGfSpNviTdTopE/wpr81VM87YshA7hNpVGWfS4E/8tou21jkorVca/GmuuebKbTP9JQ3+xP1lEKDd/K46G2g0OGG3KCA6SBn1grJESzrE7R/XYl7Il156KTpDQdKQJYTBsUhBvFwcD4FSFomOFwgXeEgUXfd7++8fFn/llfD0VluFd/faq6bDBnmSNi+wpEMkJiROXmJePiQ+pCrZaKNrR8LNy6rjcBSBvoxQwKDArA6JWxnUmxFO2C0KiBapD8mHdG7KdI2kQQxtJGqmyXIjR+pTDPMiIG3XFjMvv5z5b/jTjjuGPV56KZz4uc+FGcOHh3e//OWw+Jgx8drvDx2a64gD4SP1IAUyWDBdRoLiPwga9QGDhiQrh6OjQDhA8qZPNbPjTGsodhyZgKQx1yNh72WXXRan1zjRIMH+5Cc/iU4z/I+HI+Re2dwIPfd++4UPhg4Ne+65Z9hnn32iu/nT/fvHhceP3n8/XksfdJ92G8sU2boqazsDiqbtzACQxJmK28WlNJO5otwVoWhxqjNmVvWyyKTnrrIwmB7fmXqm5YvOVbWORdfJOnd3Pot69y+mxFtkkTizk/6+meASdosCnSO6VPR6kDQxRZBkyZfJQh8kjRpCuj2mjMooXRpHHRU4er6ZEgwDA4G+iBRYJjYJLxCqD7zOIGukbKRpubGz8AWhQ/ToUTkGHTIfpHOkcHSWSOGoTfKyvijjTF7GFLuY1x0ZZ3TejmScYdAViaWLjorJ0tGMM3lt7oqMMzpvXsYZ6ymalk3rZe/f253MOKNzqG69PuOMo3FAbGq8G0m1RgckYiJJJDDRu/XWW6NdNLpr1BRpxpSqQFXChw6OrfdRRx1VSo0hspIjDdI0LwL24BAF59PCG+TFYiUdXqoU9JNYkqSLXjon8IwznnGmbWbiDK6PeaqyIjVbxhlXibQwIKhdd901vrRkuz/jjDNi6rbNN988SrPosrs6Qh4ZZ7gWMc7LBu+nfrxUhO69//7743SVBSJ02nR6JGxUI9SVY5GMZM7GC8hL3CpmW46ux79mxvCH/BFi5PjVjHAJu4VBB4XYsAjBJI6FRiRCJC2lWKMzd1ZnabHMMsvElwIJiqQVJLOoR6bsR+pgURSzQpl5SSKFoJGsIWYsXyBxpD4k0xdeeCGqeKzdMKCsBoysAEBFkOu+yla5P0i+cvvXdlnI/V9lq2RuUV1tvass1DZKm6s48GS12YJtBn9mFcxEmt2kDzhhtzgwY8L6AxM5gC22dUxA2oAopffrCjCVZAES4iWE64gRI0oRAHVAVUOdOR6HFurHVJapLVNNXkCIW44z7ENXKZttjqEcekS1SXpxLTKlOliOtdlX0PdKxQH5UFbxVVIdtoIJSV3ALID6SIpjaqx7Lf2pJWSbcYZttRlQB7YF6yzEh4VaS47cG5VVJp+8jDNpm5U8RG1WPs4sxxnaTH9Sm+k/lNe1rTNLmnFGbdb9417YNvPMbMYZqw9vm9lmO5Ax87JtZjYmAYHBHcEBx5lWIGvghN3iQLpATTE7MHTo0KhfnjhxYowKCGnkgZeRF3nVVVeNdZYrMfp1CIJvSIABRzpNviknaRwChpDQpatsRzPO5JUtk3EG0lF5Zd7J0mFnlaX+ede2+lxtpzrUvLJlMs7klS2TcQbSzGpzmYwz1Cnv2mUyziycUxaSxiqEwYRnwu9mV505YTu6DUhhG2+8cdRLoztfe+21CxMiKLwqBIG0yMdaIgCRhlb+ZdWClEbsE15+pLDOxBx2tA7mnnvuOMhJ6meg1uJzM8IJ29FtQNJFvbH11ltHm2/0zQMHDoySTh6Y4rL4iEMP5AzBM3XnZZMZFcfILIxvptyQPd9IUOi2i6R5R+/DV77ylbhgjUoKgSDPgqPR4YTt6FZIAiYp8Jlnnhnd4pkijxw5cpas7tKHYmqIDpWXDD0qL5qmuUroyz4kJzsFZtqLdA3Jcw1J5/zH+bSN5M95rUoE3af229/pNvpmeY1m7S86FyoRJYQVGFjyymady6o0io7NKsv1bcaZsm1WxhnZD6dli9qMSgSCtGsYVerNekPRsW+Z/Wm9NGhnZZx54IEH4oJ7OoMTqLPCOeQhrYtA35L5YhZsgKqqcMJ29Ji0TfYbwMIisbmxC0/ByyQnGFQivJAKYi8J2zpT2P8gal4WSFyLZLy0LASialEsZBa60owzELD2K72ZYPdRJtVh2/3ptv0NYfKxxxZdq+hc9bbTNskxyRK+vXbRuSiT6rCL6m33QU6ULVvvonNlHZvut9sssmKvb/XWkCh9ioV46pYXHxuSr2eHndZFUCq2vHO744yjKYDJHkA6vuuuuyKx/uyBB9qlGYNoeFEIMPXp8OHh29/4RvjHXnvVFupSBwstOmofrvGoYSB9JENIHMlbi5KAb30EXrB0f94+CDtvf7ptfythhD226FpV6lVvW9e1hJ1Xz6zrUveO1FPPs6P1rld2zhLPUYSN1MwHEsfclf6XJ2Fn9ZEUaV3soFBU1j6DqnDCdvQ4IFrss4cPHx7WXXrpsMTFF8f/IW0kG6Tfz51wQljq8svD33bdNTz66KNRj41uGkk6BpWaOU1/7rnn2knaTEXRTyL9YBWBaoTzMX119E78x8Qdx0egszFZZiecsB2zBUjDv/jFL8KO110Xdlp44bCrCclKFMCFZqYZe37zzUPbRx9FCxNIWKZtSEdWwkbqxU0d6YapO79ZnAT1kgsroap0jlWcRtKyVcmgM2Vpc1VHk97U5mnTptUGcmZonZFsGwVO2I7ZAsiWFGXEOUHveM6224Y9M9KMfWGmzhkHCvTRSMzER5ETiYIFQeC8kFqEQk+IHlyZV5RxBgkcE8Bll122NmWF2O30lnOISLi2tTiRdYocP6iPXbwijoXNoGKDC6WOM+g6Ud2oLDbYtiyLpfyXlXGGDzbuloQUnAnQfrswShvQY2sBjntgp+12MRSTSO6BkDrO0AbqrrKoF/LanDrO8CwU1Csr4wz3MyvLDpg+fXrtOQvWMYnz2PRhzL5QjxGZshXIGjhhO2YbrBNI2+WXhyk//WmYMyPNGDpvXnJeWNzQJVlbCRuykYStb1mUIHFDQhAYDhyoSDAtzMs4o7IAooGEqwR/gjjKBn9iYcoGf+J6ZYM/Qb60NaveVTPO2LIdyTjDQJYX/Mk6zkhlZRdtbdaYMhlnFjXBn2y9szLOcG8hfQYV6tzM6hDQ3G4/jpbBupMnhznb2sKUPn2ihE0mmzvuuCNKkbzcZHGXqgOJVlNd+wJCYrg1Q9LWcQbSILkvqhGIutlfWkd5MKBC6AxU9KXOWGg0AlzCdsx+HHNMCEccEZMhPLX55mHhiy4Kv7j44kiuv//gg3DFFVeEww8/PKoHsAJBShM5Y/qHlA2BQ9LKkG2dbSRd8ZspsqP3AX8AZg2oeogp444zDkcnyDqMHBnmGzEiLPKnP4UPhg0Lb84zT1jrd78Li3/3u+Go730v3HDDDTEsLEQNMa+xxhpRtSD1A1Iz29Kz8o00zjQaklY8bHS16DYJLStUlbjtAl2VDCrpsfXKFp2rTB3Ta3X0XFVR79zdlXGm3rXoA8yyUMEgbXd1aOGGJOz77rsvjB49OkowjFaTJk0KAwYMqO1nunrIIYeEa665Juq+eGmGDRuW6SQhnH/++eHiiy+umWhhr0uUNwIBOVocrPiPHBnCiBHt9drYbH/722HB6dPDbwcNCkOGDIlqEeWeZKEQcz/IGz2tnGm0yMg201+kKb6RztHDok9Fp4l03pmMM1p87IqMMzagfXdmnIGoenvGmRkzZtTS0fWKjDMs3LDwQ2JX4kKkOOCAA6JTxKWXXhoXB2677baw1157xQWP/v37Z57znnvuCdtuu21YffXVY8c/8cQToyUAesdmnbo4SuKoo/L3zSTx74cQ05ztvffeMTECRAEJQHZkD7GLj3JVl3cj/Ucuy+jAteBFGc8403syzujaPEsshLg/zZhxpjJhk02ETx4efPDB6IK87rrrxu3ddtstnHvuuVEayiNsEsFaXHDBBeHqq68Od955Z5SsHA4GcwZ++hKxtlFzICkhVd14443xBbHu6/yPDhyChXB4SZDQMWezLtaO1senn34aZxhagGzmEKt9u+PFIpQmNwip5+677w6vvPJKlJjLAukI6akoISwjNy+h/ThaG0p3hlAAmNJCxkhcSNq8jLii6xvCRsoi4TBxtOmHSKVSCzhaGzNmqo2YXSHhp3FFmhFd3nPHjh0bpWr0jNIboqPGU60sDj744Dh9I2FsHpgak53b0buAhE3oVUhY02AFi8JWG9026ygsKgFZjyB9s5+pOGo9jqF/IpmjN1WmdiAPSZt9RTpYptU24wzSG+eVcMF5bXll6AYIIcwKbEorzmMzzpAlxcJmnKEtNuMMC6hWh/3SSy/VfkvPm5dxhntgM87Y66CyQGiyOmzrOMP/6LHVZnSyWOsIuqYdVHX/2OYeolLR9ssvv1w7nuvYjDM8W5tx5u1Eh03IXltvzi3noGeeeSZeB8eZVhmku4WwH3744Shloz9ikRLdYz0CFgjDiRkXeu2s8JvCoYceGvXlAi+VzWrhaE3QJ8jKfuSRR4Y999wzvpx8IELySQJ0q8stt9wsIVn5D/0mBMT0GLLmhabfQFB5zhtVM85wjTwdNtetl3Em79plMs7klS2TcSavbJmMMwycZXTYWWXRFeddO61Xnwptpl/wnBhAqXsrmHR2KWEz8h522GHRcmSzzTaL/6E3fOqpp8LJJ59cl7A5BsLGYYJyRVASWUfvw0YbbRSTHEyePDlaJAFeSIW05BuJEmnMZhdhwY99SGF8UJMgtcobztF6+OIXvxgHDNY0mHUxaHnW9CSDcaonYqSrl0n5pJNOCscdd1yMlYw+0uEowjbbbBMGDRoUbrnllpjwwCbMZeqOuoDIbIqPrcVI9jMbg7gVq7lV4kw4soFUzqDMoM5A3qscZ9DRWdtFphtI0OizWOhZZ511YuhMmS/de++90cb61FNPrZXB8oMbhh4aYMZ3xBFHhMsvvzwuICnDN6NjkR2ko/eCaS+zOVQjxxxzTJSapAvmm2k2/ylcqzX7Y5vFS8xGUaOgDkGlQl9DbYE+1vY77bNmadJDp/uV2Vvb9rd02HZmiL4371pZ57LSYdWy6eBk9xedC5UI99FmSinbZspAkPa6VepNWXvsPyq2mXttBUi2ed5knEH3nscvXJc+lGdLnV7LgjJWl57CBqjqdsJmKrreeuvVtqVHxpSPLCLon9EvI/2gI4S0kZyt4wzSjr2J55xzTlx8INymBS/jUUV2uo5eDexpd9ppp7huItWIACHzQrIoxUuKakRmf5AHuk0kLhbqlOCAF4nFNF44ptECJKltjkOS1zYvrqbdgt1Oy1KnvGPT7fTcCEF59apXljby2xKn3c933rl5N3lf886dbtuyIj17bnutevcvbfMXk2OL7oHabLmG60HYkCn3wpa1oM70m7z9WXWx6xAMznllO+PNWZmwsa8uci1Fhzh+/PjCc7CgaGFXmB2OsmAB7uc//3m0dsBBy5qO8lJIyllppZXitpxMrOMHEjd6TabKvPyYAqJSsZIsL762IS8I2+6HVPK2bVkIm9955653LgjC7kvPVVRWx1rCtvvTsrZeDGSQXkfaDHlVqWdevfPu1zwF909lRdiowpi9s/iouNp5+mzutWZpeUjrLXA9ZhZ5ZTsawxy0hq2Lo1eTNplrtt9++6jLtskKeHGQpJneQsi33357zZIESZepPlYnSNUIIUjhRYlZHc2JKVOmxOfPYEV/YZtnbCM6Ngua24rc4Qgh2mSjOjvjjDPa6ZaBMl8j8SBp8yG+DS8u6yjErVlzzTUjuWMp0gqmX47/Qrbq2HLjNMNgLhPQNBxAs8AlbEdLYKmllgqbbrppuPDCC8Puu+8+C2mj/mBK/Mgjj0QVHM4UmP0xPeWF5luOJ8owgwoDhxLr/MIiuw2aj3OGBeoDBgctzFsnGgYTFs00qHCsDSCUZpxhDYiBRNs61macsbAZZ5gp2IwzOPdYx5nUjNHmvKR+ts2p44yy7Nj1Altv2+Y0eBZ1sG3WgKqytMFm2bHHzpgZUtfCZpxh1mQXCZ988sloKbTCCivU/uPZKQxvM8IJ29ESQGLG+oi42RAw4VctsGCCZCAuyJYPLy1WSXLGsE4XqEcgGtZkFHAIIuE/ETbfkDv6cAWcgkDyMqikjjMMIOjMrbTHMTqewaJexpm84E9VM87YbUiPclWCP9GWshlnqId1PIJAy2acmXPOOdsFf7LPLM04Q1ktJssJj7akgaeaCa4ScbQMeEEh7dNPPz0mOkA6sx9eVsgIwoRs5V6uVXukTCS4Z599NhIixMCLDqmiB4fwIQTIDILifCJbSKeZp9qtiL4zox3y7OXOzoBhnamaDS5hO1oGksSI6gdpo9e2JlT8RrpCHUD4BIgXgta0G1UAEisvtWJgoNNWoDGFbAUQOCSgMJzoSpVz0NE46NevX9RdowZjMMXUrplTxLmE7Wg50iabDKENJk6cmHkMZKypM8cjcfMNWfMyQ8JIZ6g7pFLgeAXtRzWCpK5pNvuwNEkXLJHSra4XvbNdFGW/3ZaNt93fUWSZ3nYlUVXJlNOV1+lT0Ia8OqGG4tlgk192Udk+t0aCS9iOlgPku//++0enGhac0kD9qEOka5aELbtt9rGNVMZiGHpkjkUyQ8JmG2KQtyMLe6hWkLzRp0L2lEciR8WCegWpG0kPqRyvYMpzPRY5IQaFYiBSH+djsOCYhx56qHYsYGagaH0dyTiTLjrqXN2RcUbIyzgjdVRW2bx6TZuZccYOclUyznBvbQabrIwxWhjm2ay44oqFIZ6bIuOMw9EMYCGKLDVYjOBpayM/QrYKZg+Za2FLC1i8tBA2/7NYCVmz4Aa5QoJyuuCc/KeMM5RncQ3SwYyMlx0iR2fKNufFrJAFO87Ji8t5uAbnhNSJ2U1dIDSCU/HbM850TcaZojbL1RyiJaMW58HCpOkzzjgczQJygv76178OZ599drtQvBANZElGI15uSdiSmNBHi1AhYV4+PkjYSJWSsDkPUhv7IBLKS5cNoWHeht6U80CckDrlkQQhbwhQRMH5KEN5SI1zemacnsHHH38cZw0MIpA0s5FGtSRxwna0NDbeeOMYk51wCEpbJ/0kpn9WwlaAKKDs2kiGTJFTCZsPv62EDTgPOU0hb156pFMkbEnvkDWAmLkGxC0JlnNwLKaHfKdOQI6uBfeXQZWZCs9NUUUZmBvVksQJ29HS4EXEWmTw4MHRdV2R+pCM+UDm6LGRaNEhIx2TgoyXmUBnEDIqDpGvIvopLgikDnGjYlEmG9QZEIH03kjPnIPjFG0O4oakua6IH7KgDkjlTJu5pjLBcE4WzWzGmVSHbTPOyO1aeuZUh83UPy/jDG2jPnkZZ9hXlHHGOuGgErE6bL6ZQWAqmZVxhnuVl3FmxowZ8bp5GWekL5fah4HP6rDTNmP6ufnmm7eL+UFbNfNpRDhhO1oe6IIJ4UsY1t/97neRtNAbQ56QxyqrrBJ/Q5TsUxIECBMihvQgXwgD1Qekot8MABAUZTkeKVoZZ5Cqefn5zXnRpyJFUwZiQKcsyVvfyjij7eeeey5eB5LBm7MZM85Yx5nOZpzp27dvpYwzqQ7b7megSUPWQvjcY+s12khwsz5HrwALVbijH3/88TVHGl5YCJtYJEiNHINky0vONioLCAeChRyRCiFwyBPpEvLjP6RxzMWQ5lg0RLKzVhBAKhMkNwgky16b8pRFigQQHVYRIh3XaXctGGR4nrrfzJB4To2cqNclbEevAFITWdeHDRsWdczYaiulGFIsahLIFkkQkoSUkbb4VhabLJ0yqgDIl7gVxPbgfEjbHI+awSZVYDCAhCFmtiF1LXTK3EwSOOZ/qFsow3Wpq1UFOLoG3GvULkqGjDVPI8MJ29GrSJvMRyTvhQDJvg5EqkjclmCzvvNAWc659tpr1wI8Qdp8pOJAglcmJjs1T5MFM5VXOc7DgEICYenaASoZpvPWTljWJVnbsmSxKhG7H8LKKysdts1eXnQtey4Ff0r1xNqfnivdTuv13kyLnaxzZbU5TWCQdW6kbAZbBkStb7APVU1e7Grp4u21BXT/lM8LMGWDclWFE7ajVwH1B2Z+2GdDXqhJugK89EjaRO+T7tpmHFE8C5G5layLvnnxsedlcY2yXAf1DJI9gwR6bQFisp6AdptvfaxqRtsMEmXL1rtWWtZ+l6ln3rmytovqrd95bbb7Gcwh4KI2AxaRUVvxzaCa5XmZV9bu7yicsB29DpAcael22223uMjXVUmfIQ8WICFuTAiRgK0EbSVs+78kaTmE5EneSMhI1ixqorphALB6bRbK8rZRrSizvGBtvYvKcs1Uh57aidvjITL9RhKVzblg91c5F8DcrmybIWB+WwnbXis9tyxEbGRAWZSwrbC7rG3wDHi+WesKPCcGh7w1h7xcj2XghO3olcDED4sRHGt4MYk90hVg8ZEXHxM7SFbmbJpyox+XWZzVXaPusHGlraSNzTZEj5SN7ThE0JlEro7y4NlggqmwsFKf8FsDck/CCdvRq5P4nn/++WHnnXeOUk9XOUtAqLzUSNqYFCIhMw22Zn0cw0sPtB/VB/rPVMLWb1QskD5SPOcQ6Tu6BwyscprSM9IC9OyK+OeE7ejVYDHvvPPOi9YjgwYNivbZXQGsDbA+gGR56SFXqULk+IL0rawxONbIqUVAusYZBAmbtGYQCDkpWYREfaLsK6gsuJbihgB0rGnOQksy6MBtkCYbnU6OM3mgPdbRxl633gItMwOscYQ0f2ZqDmnrPCMj44xdFGQxz7Y5JVXqbNtsF/8UyMvWE101Nvr2uSBt6znODjhhO3o9IJyRI0eGvffeO+p4IceuAKRJxD3UJBACqg7IjsVCmfjJ2QZygYTxxJNKBAKBPJl6sx+yQLpjeg7RQ3aUZz/XgGRsqi27nRWtj+vJEUfXBZRjgFEQpaxofehx7QyAAcOm9ZLuNytanzL0CPba1Euu/DqXrFOmzQz+lFdWMVq0TZ3YttEO89rMs2JglDULbaUs90L3gTZw/9KBtSfhhO3o9eAF5nPsscdGb0ik7a6QoiBmzsOAAHFdccUVUTo+7bTTalYkEIKsRlCXQHSoSmQBAtEiVSO1MpCwD8KGtCAkSIRZASQK2XQ0Wp/MCAHETv3qReuzsOXLROsrUzYvWl9e2arR+mxZBkfahB299kHM3Ffur8IKzO6MQo3r0uNw9DAIqzl8+PCYfV0WAZ0F5AQZ7LHHHpFMePmxUCFOyd133x1uvfXW+A0RISVDzM8//3zMiIMUDdlA3nyjSvjjH/8Y440gGTIIQMBIsLObSFoRffv2jYSPZC5pW7G2Z1udZuvVHY4GAfpRpC+C1h966KHh5JNPjhYd0jfnfcpkhcEdnmQKJFXYZZdd4mBw1VVXhdtvvz2mMiP4EdI0Kg5IHTNDpFvUDgASl2ckAwD7NStAYkUVIKlS8Eh/XQOeCc+CQFFlQ64yE+iu4FGuEnH0Dhx1FHPkEEaMmGXXu/vtFyaMGxe+ePLJ0aFGeSHRa2P2xwIiU3uF37ROERAsOtc8qwHCuvKib7bZZnGKTeyRAw88MErNvNhI0htssEFtMQ2dN3pepuBIzjY7CVI05Mw0HSkbvSuLYgwy1113XVSpyAMSBx6SJYhkWEBDQpQNcFFmF1QiXLc7Ms4w8BRlnGEx1NaLc1kd9ttvv93ORT/NOMM9kB5azkpZGXvSssyCuJ9abE0z9lBvrm09G7MyztAuZkaUyzO99IwzDkc9QFRHHPHf34a0Z4wcGeYfMyassemmYb/x4+PC0yGHHBL69+8fX2BihKBDRtpFh4lOGOmVD9IuOk+Oy7OMgDBlCQJQe0AovNgnnXRSvBamf6g4kJghW6seSaFwpQTah1CWWGKJ8Ic//CEOCE888UTNmxMy5dszzixSKuMMhA2RWh22dZzJun+2PH0Ac0vpu7lXNkJhV2WccZWIo+XBi/jGjjuGN/fYI5L2O8OGxf9fHTIk9D3yyHD9qquGZwcMiJIvRDVw4MAoraGmwAFGJl8QBi8mJIT0xIf/Idss1QjnIrY2umeISoAI0GHff//9kZCQwm+++ea4IIlEygtdZBoHCSPlQhDov+XMQV0hJOrbqBlTWg3TZ+YAZTBncGDA4Hl0V8S/ymcl4DtBvxlt6GzXXHNNu/1MKYYOHRolEqYn8igrAossW221VRw5OSd6PYejqwAJMg0ev+CC4abVVgsLjB0bps4xR/j+JZeEp7faKny4zz5RkkIiGjNmTCRsyBuJbcMNN4wEiJSNNyR223xQQ+B1iCQMSSJxpvn/0FVDwuiwrVMOyQ347+CDD47qFtQkSGoMCEi1qf10CiRHJD1mAzj/IG3zQdrmmgxQNo6Jo3vAgIwqiwBccBfPhBlSdy4AV1aJIFGwmo53GB07BbnzCF956aWXxkbcdtttUR8IwTPNzAJSC8lEf/nLX8aFGYejK4DwgDs30s6IESPidPeD1VcPGz32WOg3bVqY2rdv2OUvfwlfHj8+mvNJrwoJQqRE9UMa5kVEAkaS5jckvvXWW8cQqJAnLyhqDfTPkK9UBRtttFF8oZG47FT8kUceidIYOmYEFPZzberH+5V6XKLXlRqAgUfOPbxTELR0upRFT0sdIX2rloBI5FkJ0sFFqcuA4nvnAZWDjYfBjMDqrYu8AJViTaCetqx03Vno27fvLE46mDYKqHIYtPLqkbbZupZzXalDspBG/WPQ5T4xUOo6bPN8Umeg2UrYm2yySfzkgSngDjvsUMufR4Cdc889Nzz66KO5hM3CCR+ATs/h6ArIMQWrD6RRFuqu+uEPwxyk+OrbN/SbMSOMW3TRcOUSS8SwqwgWcqSA7MaNGxclaVKMsWD429/+NhLZ6NGjw5VXXhn/Q23CjBKVhBabRHYs9Clok51CYzZ42GGH1dQkkDXqFVQcVhXCfkwA0aOjpwYcI4KANLi+HGS49o9+9KMo+SH1UR9ICSJT6i3r9GEdXCB5q0fmWNUlXXSU16AlQAYZlaes7mOaIgzIvTurrMpnLTqqrF34g8DzyqaOM2mb00w3lNWgnS466n6rLPc8jSXCoNfd5pVdvui4+uqrxxVrJHBGdPRz6PBwFuhK0AFsJ+iMIt/ReqBvyI4WSwxIe55TTgmrXH99GLfIIuGhDTYIv3zppbDR1VeHhfffPxz6ta9FoYLEBryYqECQspGsIcyxY8fWVv5JN8aLjboPIeTMM8+MzjYMDlh84EEHUdx4441RcLGSGQTMIIDEluqptQ3hoJumPEkXkJwh3DTKG9IkBKKUZLQTQud4zs8ARXxuCBHiK0oRJoIVbELiMinCbHlbtkyKsKJrg6L0Ya8VlK2XIqyobLromHVtnrG8JymLKoo+I+uapiBsOjZSNTpsRnNuFgF26DhdiVGjRoWjjz66S8/paB0g/SB9Qb6rrrpq+PCgg8Ke//53+N23vx2+P25cWO1b34ov5H8uvDB8ddSocPjuu4ftbropquZQa0iSRddMP0NyQnWBuZxebCToSy65JNxwww1R5w1RQt68sErai5mgVXEoJnMRHnvssehQw0wW9SKEl0XYXF8WKyx2cQzXYkESCZjrIKXb5AGOrgODIut0zN6Qxnsi03q3EDYjPVI2oxuLlMRoYHRH+ugqIDGhL7cSdp4ZjaN3AR0pziiQLP1uwoQJ4dVBg8KFzz4bvnHKKVEyrZmlHX88CRfDPO+8ExccIV7UFZT9xS9+ESVcpuDSnXJuiBJCpn8jsa6zzjrRIQYJTFnX0Vkr56PVX7NwefXVVxfWX27x6Hcx18NLMovkkf7QZyPFSvJTzkmuKc88FvV5P2iDlbCV5T39nW7zzfVVlkGn6Hj7m7oVHVvm2h0t+++Zv+29K2qzvRbfDOh2kMy6Fnpv1CwMzjxbZZtPj7UoCqzVo4RNRenskyZNih0N0AgWZ/Ac60rC5mXLSmTqcPCCEndDUicvz5dOPTWs3dYW1Q5ykKj1nxEjwquPPBKef/LJsP3220eCR2oeMGBAWH/99dvpTLEQgQytegBJHLLm3JAa1iPYQGeBmWe9FFGQPGqXeqBtDEyAttgY2gwsOHow8MiZhuta0hWxAO6JrZfdxzfEpcW0tGx6vD2XCNsea/dnnUvmkul5031Z57L7dV0Rdr02p2UZfKXzL2oz6wUy89T/6bmBnknDELamZ6k0IA8xh6OngGojJcEi0D8RKJCyKYtucp999on7rGddlqCQOmMUgRe5q9yWIYg111wzEkBWlhoGEPZhycCMgHtgJWz26b6gf7X3yG5LtWkHKVs2Pd7+hrCVcT7r2CrnKrNtz8W95rflo7Jtpkyqwy6qp90HYWt2JbDmwaCJINGjKcKomFXWoyNEgmaUYXrG9PCggw6qpUK69957w8UXXxxX4YUhQ4ZEe1P00Jr6YX6l35gqcU4tpjgc3QkIlH6N9ItpHqoDYmR3B6699toogXcF0JnigAMxQTCy4kDChihZdMT8ECuVrGSxju6H4mrDZTIB7IyBRGXCpoOst956tW3pkTHlYypJCEn0ywSDp5NA2scdd1zUwwl0KDvqscDDyrmA+oQP5I+VicPRnfFFLsA+e+biHP2SxaSFL7oIncN/j+lCoGLh/cAUsCOSlrXDhpBJIowkjZRvrRz0jfCjGCOOngPqKi0K87y6yja7MmFjplQ0pUMJP378+MJzpCQssxiHoyeARIrU+dDDD4c1br01fPyVr4S/bLdduOmmmyLBnYODCXFHRo7s8muz2Mm0GMGmI5I2wg1koAzfkDZTc35b1Q2SHYOP4pMwY1X0P9koKxgSsHpVzl9kmoYghhWKyqbOLPZcNtiSZtDM0FU2jc2RBkZKM878ZWZwKFtXgTrbewDstWmvbTP9QKCcDdZEOXsdbKzRJui/1Akn1Uuz0Lvaaqt1ueWIB39y9DooG8uat94aTv7yl8NvPvgg3Pn882HX008Pf9ttt7DcVVeFd/fdN7y/7bYY33Zp/j4IFIsS9OOYG6aEVZa0GXBQQ2Iui8MH57XZamgjBMb0GxJkHck6ztTLOIN0iGRelHHG6u65pspDbHI4UbQ+udtTH7nzdyTjTL9+/XLLKuOM2siglEbrK8o4Q7vk5JQ6zjCQY4Vmr835strM/WPNAHNMrl/kNVoVTtiOXgleSNZS1tlnn/DKmDFh/UsvDVN/9KOwwowZkaznP/300F3hk3CuYIETxxgsUapAJnyobSBiZfVm2675YM4HobANeWQ5znjGmS8XZpzJitZXpt6KdqjM6nicci+7IvmBR+tz9EqwZnLRRRfFZABE7JtGQCX0vHPOGd4fOrRbrw1pYN89efLkSuV4+dFX8w0pQXws1iO1Ig3zLQkb1QFSLZJjSpCOngGDDYMAUj3PTPG5OwOXsB29Hl8988zwuenTA4EO5poyJW6Hbo4YifMOxM1UW5JsPUjKQxWCxQHblEWHjHSJBJzmdIQ0UIUgQaYSoqNnwHNC0ucZoDrpTOhVJ2xHrwPTXqRRdJyQMwkM/jF0aFjjllvC7WuvHRYdM4bMA5nZaboKqDJwwsHqqixhM6VWtnUkacge6RmVBaoHJDjUJEjh0sFSBumO45HCrQ67KOMM18nLOIMOvSjjjP2dlXGGa+ZlnMmqV9mMM++8804tHrUN/iSCLGqzHF3yMs7QZpt1vqjN6LBpZ7pwy3W1ANxROGE7eqXEg153/rPPDmHMmPDZ4YeHqXvsEY5dc80w19prh3fnnTfMn5GdpisBcZB+bPDgwWGLLbYoVQZdNdI1EfqQpCEPnHw4lyRrFrggcSwqIAzIQxlzPONM6LaMM0X3DzAAEnOEuqdWNVXghO3ovUC3O3JkmGvEiPCfV1+N8dh5uV8bOvS/hNLNul9eaAjVukAX2fRyPCRCZhlJfRCzpDv+x2QQSQ6ShRw33njjSKxFGWwc3QdmGDw7ngGDBc+sM1YjTtiO3gvjFIP0yDS9Jvl1ozrEgvjVkKl1HEvBC4/kRx2JG496A8laEjawDjPsJ/Sr0lchJbqfQ8+CgRQzQVQtDLTMDPiPATq14a4CJ2yHI4SoamBxrqdzIULUBJoqui4vOqoFFqwgbGVtT83ERBAQvGyGIXqkbSQ76ziThlzlGEWmQyosmrajC7dqhpgz8403auVTr0o7WCguiYCO2ZbNyzQO+mS0mXaprI2pouvaaxe1mfubPgNrf0+b7TaDrK13CnIAMBhjwimgJuls/3LCdjhmBvvhpawXSa87En7Uy3mKakPBhRhUMNmDiBTcyS54QSCQAhK2jhMxInlb1QuOI5L2aL9c3gGDg5xCsjLOsICnslwDMlR5W1YZZ2yeSptxJi0rq5aijDMfmVgcSK623rbNECqzDEu0RW2mrFRHWRlnOF+ZNjPoZJlSch8ZUFJvzipwwnY4ZoJQpEipPQkWECEFBoq8RAPKwo1KRItmfNsMKGwj1RFbBKlT+QW1P2vRLM2+kkqLVTPO2PJVM87YslUzzsyRU7ZMxpm8smUyzuS1mUVHvDVZJOYcPD8GVp5vZ71m3XHG4ZgJJCoko846N1QFao6nn346dz8qBqQyiBjpE4lbDjL65n/qzjGod9J8g46eBcSMRYgCQPE8usJF3SVsh8OAl0qhfnsKuKmfddZZUT2SBaRUpHCSIqSStf2GGJAImbqjhuA3/9lY9VaatP+hsrD77bZsme3+9Hx2O+t33rFpParUK93OK2sTGFRpM6Rbts1pWba5Hjps+hOSts7XGYHACdvhyEi71dOEPSLDKoWXG70qWZuQsNGTorO1mWXsN8cqyw7TcYhBKh4cTiAMm3GGY6SGQe1h9bXs0zbkD+nZBUFbNt22vxlsOLfVnReVTetl65G1nVVvWzZN81X23JyXe6WIfmm90nPZenCfpPcHnAeViJ6FTR5eFU7YDkeCsp6HXQWIFGsOSNVmKWFxDfUGumdJfHlxr/mGCDiOWQLOMoRA1eBDmVSHrVjNAInQDlR2W3HCrQ676Hj7mzoxyFgddlHZKvWqt83Aleqw8+qZbrMAneqwbb2KzoUOm3tm+xGzIu3v0QQGDoej60FiA5ntCbzgkDhJrTERE9BhW0hyIwbzpptu2k5qdLQWnLAdjgYAwe5JrYeVh8A0GzMzrAz4FlGjo8YKQaoQ9iNhI+VB8GmuQkfrwAnb4WgAEOZV9rvSfRIbA5XCj3/84yhtEzRIKhG+kayxbEHPCokrwwz60wceeKDQSQOrBZVPs69glWLtplMwIBB4SmVTc8RUR2vtqNGrU1eVTV3yixxn2tra2tVZdbUqC2v/nDrOMJjZ8jY4E+XSNlsTPNQYWOCobDqLKdJLp20uamM9OGE7HA2CpZdeOga7xzYboENF78xi4qOPPhpJAZ02ziTyfkSSllPNM888E5599tlITMquooh6EKyNNod+G72yJHECE1nHDwhGZbOi9SHh2wzj1nEEe3CRU1bGGXTaKgspcr6ijDOW+KZMmdJu9kCb04wzGvBSx5miNivjjNqcOs5wLmWeV5s5X1ab02h9zIzQidts7R2FE7bD0SDAWuSOO+6oEbbAyw8Rod8mdgi/Fa0PglGiAsgQCZuFNsiF33Ixz3KcsU4gNpZ22YwzNrxq1YwzZcrmReub05SF3KtE68trc9mMM/b+1cs4o/vHb9qhenckLZzghO1wNAiIFnjaaae1U4uIlCAiiJPkvRACJCSpGckQMuE3JNHZiHCOxoV7OjocDQIkrzXXXDPcf//9mfsUgJ/kvUhzSI98Y8KHWz3bTNGZkqe5Dx2tAZewHY4Gwk477RR23nnnmA09jTuB1xy6VHS1t99+e5xqY+7HAqJidigtGHpn6WD5jb51+eWXL51xBj1rXsYZJPqijDOcuyjjDPr37sg4889//jNazHQk4wwqEdRKeRln0jWAojanOuz0/rkO2+FoEeDViFXIk08+GVZaaaV2+yAeCAOCJhof4VLJDcn/WRlnFIMECxMkcNQlnnHmuz2ecUY6bN0/d5xxOFoIRx11VNhuu+3CgAEDZtmHdAhZQtxYjCD5SVqVFEjWGf4jIBT23RCrlQAdzQsnbIejwYA0jDSGxQgStAULikhrSH6YtCFxxrRmr70WJUsS+0LUyv8IUbsTTevACdvhaEDstdde4ZhjjgnDhw/P3I+OFJM99NrobJmuo8OG0LEvhqxRQ7APnTMR4zhGsPpnnY+y0sGm+y1QC1j9OrpfdMvSHafR6KzzilVP6FhbNivTuNDHBK8SUA+pLOoW1CJ5SNvE8Wqz4n9Y2DambUaFYuttHXbStQfa3Nk42IITtsPRgFh33XXDSSedFNUcecGoIBEW1R555JGoz4YUMAFE+kbPCxmxiAaR49iC5J2XcYbFQcoKXLco4wz7VVYErfLogstmnJGnosqig08zzlh8aBbzAMepLLMS2mwzzlC3vIwzts18WweerIwzxCwv0+Z00TFtsy86OhwtKmWfd955Yb/99ss9RpI2hC0LDDmXYMXAIhuSNRI3v/MyzgCbLxGSq5pxRuUh9yoZZzi3vXaVjDMgr2y9jDNpWVA140xWm9NFx7RsZxYdK9th33fffWHzzTePnYCHes0117Tbz4g+dOjQ2IFwx2Q1u17OOnDVVVdFDy86G3q4m266qWrVHI6Wws9//vMojfHyFwGSRspGMmWqzlT/pZdeiuoCiBIit2TraF5UJmw6BPacZMjIwgEHHBBuueWWcOmll4YXX3wxSgcQ+HXXXZd7zgcffDBsu+22YZdddonmTKyO83nuueeqVs/haCnsuuuuYeLEiYXHoEPmnVxhhRXiAiPTdJxpcGNHskuD+DuaF5VVIptsskn8FJHvDjvsEHVwYLfddgvnnntuDF7Tv3//zDJjxowJG2+8cQwvCVhswTHgzDPPLCWdOxytCgSZsWPHFibpRc/KwiJ6VXIIagGMqbd0x8x85bKOxI4jjdzX0YMjkVtY3TE6bNQKVj1g9zPTttvWoYTrY7Fio9mleumy58raLjoXOmyur8Gq3rntPu4R6iO7iFm2nrSVWY7VYdtjbZqx2a7DJi8d0jTeWqhN7rnnnhjJihgJeXjooYeiZG6x0UYbzaJuseCm2E7QGb2Qw9GogBjwfvzjH/8YDj/88KijzUthxqLYGmusEa0XbCYapGz0qRCuksGi90bdwn7InkXKVDdcpMO2+4v0zqnjTFbZsuequp2lwy57bu5TqsNOj887V5YO2+7vUR12PSANyAuLBiM5oz7B1TYPmCGltqJs838eRo0aFW+mPmmHcDhaKRsNFgsjR46MUjLSXNYHLz1iZlvJjt9I3BAIxIxTjcgD4oB0IO4iczhH46BbCJuURkjZmNCccsopYe+9945OAF2JQw89NC6m6MP0x+FoRWDdcfDBB0dJ8dprr808BuJFrYH6QXGeIfEnnngiSsgQNqoNJF5M+5juYxSACsWa8zkaG12qEmE0P+yww8KkSZPCZpttVouNwKh/8sknx3i/WVACUgu25defBSSONJaBw9HKpE1mdVSHf/jDH8LWW289yzGoLJZddtmoRsGhBhJH7w0hM8VnPwkOlIWd/XhLErPEqhdZxCzKOIOdMQODYm1D/BbWiSR1fuE3dVHZdDE0LZvi/fffj2aCWRln+G2vlYIZBYOXrm3bSDl7LmDtt+G2Km224Ly2zTa7z2wlbJTpNjqWwENJb4YF8Q7uvPPOdvamLDryv8PhCDU1xr777hsX4hGKttxyy9o+uasz28Q6i98QBJI0vyEqSIfFR1QjrCuxxoQqkUVLFsX4D2Ihww3vbF7GGaRyBgKRFtfgunIcwatSRJyVcYbfKgtX2LL1Ms68++677RI8sD/NOCOiTR1nyOZDm3Vt6+yijDPirtRxhutwP8u0OSvjDPVQ2XqDUpcSNg9clQR4UCFBY5jPYsg666wTrT2oHAr/e++9N1x88cXh1FNPrZUZMmRIVMijhwZ0QsqhPkEyJ0j7448/Hp0GHA7H/4HFQdQjRxxxRFR32Ih+EBNEgS8DumreR6xLkKzRUUNWqEOUF5IBAHJnvUgekKw/cSzvM+tQZaP1Vc04Y3XmVTPOzGvKdibjDBEDezLjjOpdNAvocsKGSNdbb73atqw7MOWbMGFCJFv0y4MGDYoV5YYdd9xxYY899qiVYbSyNxHLkssvvzyugqNS+f73vx8tRJjeORyO/4PIa9iwYeHEE0+cJQQrxAD54guB6gMBi/cJKRkiwaVcJmn6RnJEat5www2jhAqxdFXsC0fXojJhY19dNEIwQo0fP77wHJj6ZaVH4uNwOOoDEkbNiFCENCwghSItrrXWWjU1Ccei900lbH0jCaKqgLTnO+OM8O2vfCX8c889Z73oMccwnw9hl116trGOGjyWiMPRhIBsBw4cGG677bbwq1/9qvY/hIyqAokaQmcbt/Xnn38+kjiexKgkcHDjWw4z6G9REbz34Yfha2edFaa9/XZ47eCDo7452nfffXf46vnnh3f33TfquIsyzqSOMz2Vceadd96JKhHF92AAsjrsehln+HQ044z9naXD1uAJPPiTw9ELgY/DlVdeGfXDVoVhHWsgB8gGgodsiLWNOhK9Nd9Yk0j3in78zWOPDVMXWywscswx4eOvfjX8Y/fdw2p33BEWvvDCEEaODPOPGBEWfeMNzzgzE55xxuFwlILUGzfccEOMJZIFpFnIiMS9SH1LLrlkJKall146Srks2rGfuD0yi5ty8MHhb2+8Eb47enT44pgxoc+UKeGTQw8Nnx8xosfb6GgPz5rucDQpIOttttmmMLIl0iVSNVIekq0kXLYh58mTJ0eTWqkAIG8sv1771a9C25xzRrLm+9OZcX4csxcuYTscTQwkZabgTLPlmJEFpOssSC3C9B09NmoAVAqr3nprJOsZ/fqFvlOmhLlHjw7h+ONjGetko20GAoWBLXK6SaFBRGVTp5LUwKFPYr1Cu1SW33kBsrLKoq9WWQaqooiGaVn01B1tc2fghO1wNLmUTRRM4smj28VHgkVBvIqJQVJGrQIpQnbogHE2+dKYMeGrF18c3txjj/DGDjuEhSZMCAuNGhXe+de/wnNbbhkX/iArubRD2KhZLKmlGWcsyXMtLTpC2LYs7amXcWaqiXZny6KXp26KQVQv44wtyyCF401Rxhm8QlU2bTPfnnHG4XDUBYSNFQjkt9VWW0WHl2OPPTZKqyQbqQdZRkAk37388vC9P/whWoPMO3JkWPzTT0PfY48N78w5Z1hg7Niw6jzzhA/22SeSkV1wg9y0qAbZVck4g2RrIwFWzTjzVVMWS5EqGWdsWVvvMhln8trcnRlnnLAdjiYHrtp4PlorCGLMQ944uVkpsR7m7tcv/HmnncILP/tZ+Pctt0Qbb8zkPiQO/gILhKnvvht14mksaUfPwAnb4WgBpOZqZJuBaKuQNfjbzjv/V0Xy9tsxgw1mbJA2EuTfllkmqhi+UpBR3dG9cMJ2OFoQWH8Q8iEv2YGQlxABfTbTfXSvxODGBhmVCfbX6GilW2axTvrcPMcZyN7qsNGxdzTjzF8LMsyk2zjO2GB06bnTsrZeVTPO2N/cH9QeTZFxxuFwzH5ceOGFUR1ST3UBGefFDYHwSO1HfkhIBiuUl19+Oep1kdxZsITUIXMISVK+dXbJyjhj92dtA7udFwyq3naWDhtk1TPdzso4U1RPuy9Lh233N1TGGYfDMXuBAwwEKhftjgKpGbKGdFnIhPwgaqRsLCr4RjqXpYlQLxpdur/edleVBUX17Ey9q5btKJywHY4WA+RA9EyyP3WGKCiLmgBJG2caInVi8YFUzj5I28b1cHQ/XCXicLQYUAWQuPexxx4Ld999d/jpT38a/1cCXlAmfCqkjOkaKgk+mAmiIiDWvQIhYZusc1aR3OXIU+SskoX//Oc/7ZyAqgxI0rWrfBVdMgOTLVs125Uti96/o3DCdjhaEBAywaGITY8ZHlH9yLVKHG0sSAhyVI8s0f1CxpAV0f1YTCNUK/pZyBrVi8K5QqQ2+4qQOs5AXCxCKjkCdbCZW6Ljzpe+lJtx5s0334yemQIOPNbZxZJwVsYZgk7JKxHnnTTjjMC50GFr0ZF6EHhKZdN62zbLC1KLjhzHttrsi44Oh6MdIJblllsuJjhAl40aA3ttgjwNGDAgeimi0oAAiwAx4VgDua2yyipxIQ0pG7KGhEmSAJGlTiV5jjMQF3pvG60PQq+ScWaBBRao7YcMO5pxxpbtiYwzXRGtz3XYDkcLAkkWooCgV1xxxXDkkUfGrE+oM9BHQyp58UVSQHxIvffff394/fXXo1cl7uOQMATq6Dm4hO1wtCCQgC+55JIwfPjwaOmBVIqEyELk2WefHSVfJMBNNtmk7rmQbJGwiU2CikQ5IlETIM0Sw8PRM3DCdjhaCBAxC3Hob5GGf/vb38ZtLc797Gc/i2oDEvmSwxESr+dcA1AXkLCXrDUASR0VACoV/rfZZ1K7ZwtblyykZavklmzLiOxn/6tSr3pRAuvVOz13V+XIdMJ2OFoIqDrQTaMCGTJkSDTLQzpmEY3FsNVWWy3st99+YeLEidETsshxxkrYqECWWGKJOAhoEY0P+5Cw0zRfSPhZKcLQ37KPskJa1pIn+3SuaXVShNFu9PWyP2fQYoHPpghLzy2w6Kg0YXkpwjgmL0WYbXNWijAInXMCj9bncDgiiNiH3TRkgzkfZAGhQjSLLbZYNO279tpro6UIlg3WuiELEC5ERFkkc745P2RErBFZUSBhe4qw78VvTxHmcDhKAWn68MMPD1tvvXV46KGHIkGj8njllVeiBEpCXkzzsPyoZw8sj0nUHxAuRMuCJefhP4gHgixSBzi6Fk7YDkeTAkK1ZIk0TLowJGpyOEKw/EbK/dGPfhT3o4O2EfiKzPqQCimPpElmG4D0iqSoIFCY87EtlQKo4v1IG2zZqplbPvnkk1pZzlOUcSYF11JZvqs44aBq6WibOwMnbIejCQFR/P73v4/SMgGZyMuIvhrb6+233z6StUgJ4tW2CJLvelNzLdohUaMP5hzohyHwZ599NpI3zibot5U7ElgnmtRxRvprZZyB6DiHyvKdZpzR77a2tjjIWHKkrDwtUZewLZ01OmbrOAPJ2owz6MOlpqBe6J2tDts6znCep59+upZlR442qjcDh22zdZzhvnFuBkngOmyHo5eBNFi33357uOCCC+JiIF6N6GuFNO9iijKSLAQJga255pqR2DgnJI0USxQ/dMRI8mxDVvJApEyVjDPo1633onVoyXKk+V6SccaWtecuk3HGlrVZdMpknGHwymqzZ5xxOBztMH78+EiigwcPrllFII2iwugKZxYIh/OyCIcEjxTLeZHiUalgLbLyyitXjgVSFahduGa60Nhb4YTtcDQZINN77rknjBs3LhImkvAVV1wRzjnnnHD88cdHibgsshIY8B/TdqRTyBmLDqRUBghJikjFqC6Y5lcN/lQWZ511Vhg6dGjMS3ndddd1yzWaDU7YDkeTgQBOWIFowfDee++NLui777571C2XcYQRUjtsVBhItVqsRHUiEzx02fzHBx0vhI6kDYmj05XqAd2xfnMs5WzAI7ufwcFuUxdtYzPODALS5joAXbpVcTCryDuXgj9pFmDPDezv9Fy0j8EKl/yscxedS8GfpJZKy1ZdWO0UYd93331h9OjRUXmP0n3SpEkxmIyQZ4R/0kknhYMOOihzH6P5iBEj4rnQdxH7gCSiBJtxOBz/B2yoIcBll1229h/SLgSLPhXzvc6AQQC9LXpYLEG0cMc2RATZYOMNkWHLzQdCglCx0dYim35DWui4rQ5bdt0C5bXNb1seE0UWVvPKzqhzLlQpltDtuYvOha4+1WEX1dP+ztJh27I9GvwJ5fryyy8fpytZgMTth1RFkDgZnPPw61//Oi6gEPsACQGX2Q022KBuJDGHozcBQjn22GPj+2KBYEP4U/TaWIl0BBAKZAwBQ66QLE4m/FZWGd5JzPsgHqwleK/5WKmzzCc91m6n52K7bNk+Geey+9Jz1ztXUb27os09ImETLKYoYIw8haxEQG45OkIWGI2uvvrqeNzaa68d/zvqqKPC9ddfH3VydFCHwxGiQAMhyzxMQBJERYKOeckll+yw1YneX8gYYempp56K0jzSNJIy6hOFZXW0oA4bO8cbb7wxXHTRRbnHMN1iOpGubONJRTjHPEiXJnRmmuFwNDowdTv33HPDrrvumrn/Jz/5SafOD9mjVkHXTNxsJGpUIkzr0QEjUfIfpI1+FvtkvX9VLUWQ5FW2qrQ5derUdu99FWcXeMZeW7E/yoBjbdnOtLlhExhA1DzYgQMH5h7DfhYXjjnmmDjdotPgEIBbbWpvaTFq1Khw9NFHd1PNHY7GAioPrD9s8CGw2EUXhba+fcNfBg+epcyil1wS+syYEf68ww6552WxEOma945FNtSYxBdBwsacDqDHhbD1zfGoRuVUgvrEZl+xevTUcQaXeMqrLNe0Zbk+5oTaZiFQmD7TNV6xQtKMM/xGzy4o+JPUFxxHWV0bt327UIiAKaSOM9wPBgdt853X5jT4E2t0rM2pbD0b+dlG2OivBw0aVNculKnezjvvXBvNyZKx7bbbxoXNPJD66IADDmgnYduFDYejlcALn6pCAGS9+IQJ8bclbcia/1/fccfC80KCZI1R9hjIkvcQiZBFTMgGlQjEKq9A3mekb5vXMC9rTFbGGX7b4E+QeNmMM3PNNVe795zz63gIt0rGGVuWAQjzxO7KOMPiZ0MHf5o8eXI0uL/yyivrHssDwTSJm0Zj6CjbbLNNrt4b8OCqJsJ0OJoVSL3WK08QSUPOEMX/22WXsOCFF4bFr7givLTdduFPv/hFmPLhh5GI2c837xmkpuh0ECbSKASEVQhSN/kPUY1AUEiiELRj9qPbCBujfgLOYFFSFoyOfIgzcOutt0ZTQIejt4OpOCoRTF15N1I76xnDh4d3v/zlsMyYMWHpiRND36lTw9923TV8uMsu4ctTp0aJGJJG7cFUH0kQEsalHUmaGS3SpSREJEMIHX01UiZSsRN2Y6CyWR+jMavHfAA6JX7bYN5IyVddddUs5kcCqYbOPPPM2jbkfMstt8RzYd6HVQmj+0477dSxVjkcLYSbb745/OAHP4jECYnyrvFRfkW+H1x//TCjX79I1ny/veuucQrOYhlTeaRrpuUQN3bNitdhF+3Q9yrPI7NXZrioQ5jSW91wZ1FlobCzx7aVLF8vE05n0JXnrSxhP/7445FQBemRd9hhhzBhpi4NN1kqiR46C7i0WtMgOgk6aQKjo6fDZvu4446bJVi4w9HbwHuEuzkpvVKwEIY1FSqMH1x9dY2s+f7mBReEd/fcM+pxIVyOY7GPGSzlIGL5ObBwxgIjH3n4oS7RohnSN4uBimTHb/bbtGBp9hWhIxlnbGovu29aBzLO2Gh9Recuk3GG+1GUcUZoqIwz6667bt0RY7fddoufPGj1WcCGlI/D4WgP/BFYDEzjPLNYyOJbjJ536qlhuauvDm/tuWf4/PHHhzlPPDF854QTYujP9/baq5Y0F0kbwmHNiHeYb8UGgXBwwIFgIRwWBbVoBtEolgiAyNJFR+AZZ74Xvz3jjMPRC4EkeuKJJ8bZpwWSJKQKmSx/3XVhgauuCv8cNiy8uMUW4TvvvBM+3Gqr8I333gvfOe64MPV//zf8ab/9IulCJMxiIQ9Jm5ISUYdwXhY2kaCzLFIcsx9O2A5HAwCJl+zjSK2SAvH0RXetKb6AeoNjkFQXIHPMvvuGr51+eljolVdqUvOcI0eGTxdYIMxHTJDvfjdXwuYbyZDBAbKG0JGCq6gjOQfl5YhSVWdry1ZxZpmdZTvb5o7CCdvhaAC89NJLcW0IFQIkzdSfBcZTTjlllozo6JSRjvn92vbbRyl54ddei0QN0SoC3weDB0drkC+/9lpt4VASNjpbPInZhmyQuCkLoaMKQCKXUwiWKXKcAZwHfbim+BgiUAeRPPWS3jh1nEGSZ0BQpha2MSFUWa5tM85wXptx5h//+Ec7HTYOKyrLAIa6QV6ItM06ztBmm3FGsb1VlvtLW7J02LQZ4wq1GfUJOnKV53i1mfNQD+mwUTOxrTC0nnHG4Why4OV71113Re9gLKX69+8flllmmShNC9KLoj+G4CHcs88+u53+lMBMkA/bEC6WHpAMRGclbEgE3wfWpCAmyEbR5Pi2GVJSHXZW9hWIzUauq5JxBtKzUfPS/fUyziyWU7ZMxpm8smUyzjBryWpzd2ac8XTHDkeDAILG9+DAAw+MJAeJY3O90EILRaJC8uY303CCQN19993tpuJYMkAM9j8W4axlgwgI6RNLESRdWS84Gh8uYTscDYbHHnssSsFaEET9wJQcSRj/BIDkTYhj1Ac6DikXKY5pP8St/zExY6ovszTUHxwLUcscrSvtrB3dBydsh6PB8Mwzz7QLYYzuE70nkjPew3Z6bb+lc7YxLvQ/55BZGtuYr8kXAscb+UAIDBJa7GR6j1pBOlnqgT20XQy12/a3stPY6HZFZdNtZhplj82qB+21KpG8eqbbCv4ku+y0zem2/c3gh97fRiJM93cUTtgORwOBl5lFNWulwWKZFq2sRF3lG8KUhK0sMqhWIBWkbfStxLoW+K1t9LOQnt0Pidtt1Cvatr+VZswey4CSV5b62HNTt7xjs7btuSFNflvCzqtn2mYWK60OO61Xum3PxX3mnuXVUwubHYETtsPRQHj00Ufbpf8CEA4vPPpra4oH+IYgkJgh4CzJO8vxg7giCvhEOaRrK21ipaJtzk8d7H5UMnnb9jcDhfU+TM+ddS67Py37+YLr5pW1hJ1XT4DKyZaFsDvSZsicgTfvWGvlUhVO2A5HA4HsSyw2WkAc6KExYYO4sde2ErSi6Sk2tJWsUXso+D7Eq1jULFBCLCxKSt3iaHw4YTscDYQnnngibLrppu3+g6whVqxEsiRsScwQb/o/Up0160PC1jkwI2TREckd221H48MJ2+FoEDCNZvqeehmiu2bRCnUJ++RMoiwncjOXeR770ZPaQEboW2O87JnETGRMJG+cVlBb6H90tyxAWs+/1HEG8ufcWlRD6rfZV1jEFNBhU16OM9QBVYzKphlnqCt6dm3bAEvTp0+POny7mEe7dKwNWKWy1nGGenFulVceS8AMhJlKXsYZjuXcKsu9yGtzGvyJeyWHJV2ro3DCdjgaBI888kgMwJTGu0Z9gb00ThqSjnGIgWiV5COVvCEUdLIQd5bjjI6FcNiGoEW8xMeGdKoEf1K41jIZZ6iHDf4EgVXJOLOoCf5k21w144wtC6mix68S/Im2lA3+xDP14E8OR4vpr4lVbaVKpD4WrFhMQ1IFIiDIDKK1UqWQp5NWWX1LCoe4V1hhhXh9zud22Y0JJ2yHo4H015tttlltG8mMaT5SKl6QSHSoBIiBgbSJ5I3JHwQPqdvFRiRNpFEIGaJn8REiVjJZzsE3qhGORZLkWKb+SNqOxoQTtsPRoPpr9KdM6yFsOcxYlQjqDRYMse/V9FvqDf5DKkclwm9ImWPTaH1cU/EwmNJD7lihWBviFDYJQCNnnGmrWMei463evCo4b2fKWzhhOxwNAHTAKUkiRaPvRCeLZK3FRb4hZaRlvrXAhWTN8ZAuH0nYSM/ooRkUZM6ncymhAGU5F5I4Za2pH9sMHFrUJF4212mGjDPTp0/vsowzHNN0GWccDkfXg0U86agFyAbJGGk6jWEtCZtv66qORQnlIEW76Fgv44wWwjAdpJxdNPOMM8Ezzjgcjv9D1pQZvTQk8txzz0W9ss0SYyVsq7uGDCW9QjhIhdasL5WwVZbtlVdeOV5H0rCj8eCE7XA0ECBgSYRMqyFdQqkWSdggDfZUxqwvyxSQspJQHY0HJ2yHo0GAmgC1iNQF2AWjl7355pvjVNxKxRBtKmGT1ABwHOm+AOdDulZOR0nYDAYPP/xwzWFGjh/sQ1+uYFFZjjMMAjbvI7MAm1jbek2mGWf4ZgaAZ6Z03C+//PIszjFZGWdmzJgRr2t12C+88MIs+nKpLdKs6bTZZpzhOgIONmnGGes4QxsZ9Kxaw+qtqZfAeawOG502x6NG0rk6Cidsh6NBIGlZjjMQBDpZHFmke7VSsc2+khduFQsQq8OWazrESAIErE9EQiqLLXbVjDOcv4zjTFZZiNFuF2Wc6du37ywZZ/LKlsk4k1e2TMYZ1EdldNhpWddhOxwtAF7wp59+uiZhK/8hC4FIj5L+0qS8VsqDkK15GmoR62ijlGNIrpARJI4k6mgOOGE7HA2CH//4x+HKK6+sbUO+qDaQznCqgajRL0PicpgB+kYiFOnbqH2oK2zGGdQCSvLL8RB8Z+JbOHoOTtgOR4OA6XtW1DzUCkjHSN7WFA+k3xByUcYZzgOB40SDbhWiJjARemrpvQE6WJkZyo5YgODt/vR4+1vBn+xCJufT/irnArIxF4rKch3UFqp7ei1bj6yyDIA2CJbdX3QuBka27UzIHitb747ACdvhaBBAqDZinADJslCF6gLS7mjGGRYwIWsWvyBSSAQdN27vRP7L8xTkW5+s/ek2JGfLFh1bZtv+7pN4WRbVS/XI25/lsZnX5nrtSI8tum5nvESdsB2OBgGkmvUyI7EhoZLYICseNguIEG9WnGx9Q15YTBCrhHghOJ+g35alBxKhzenIopm2OW+66Gj3p9v2NwMD1807tsq5qm4zIPHbzg7Knpt7mi46IiGXqaesQ/KOtd6SVeGE7XA0GNLYE7iss6B4xx13RJJNY0UjNcs7Mc04A8mweIl0jVoE8oK8+c/RfHDCdjgaCNFy47zzwlzzzBP+Mnhw/I/4GSwSrr766uG7l18evvrOO2G+M85oJ0EjMSPJFmWcQcJTfI0s1YujBQn7vvvuC6NHj44rzYz6kyZNCgMGDKjtz4tKddJJJ4WDDjoocx8d6KijjgqXXnppnK6hy9txxx3D4Ycf3mVRrhyOprHF/uc/w+ITJkTyfn/o0Pg+4KSx1B//GMKJJ4bP9tyzFhpVi4h8W4cSrEhYUOSjBT9IH5UKUjfvL2X0ftlM3pynaGEMssfRxmacsSiyM0ZFQpYbm3HGwgaFAvb9nzFjRrvrijsE6lw0c+B+yflI90ignN1OwaCp+w2sqqRem1GR2Db3aMYZbsryyy8fdt555zBw4MBZ9luPH4CX1i677BK22mqr3HOeeOKJ4ZxzzgkXXXRRXAB5/PHHw0477RRvyrBhw6pW0eFoWkDOV843Xxiy445h8TFjoh72/w0eHL5/xRXhixMmhJe22y68seWW4eNXX625mQO+IWGpRHB2UWxr1CEQvMz6AOSBVK7yKguwHsFaBaedvGh9yuAucE2VhxRF4lnR+sieY8vaa1MWFZBV+0ivP21mxpm8srQT4tV26unIufPaDFnTLll2ZEXrw/nHXpvzZbU5K1ofnp0q26OOM5tsskn85EHRroRrr702rLfeejUvriw8+OCDYYsttqgFb+em/v73v4857ByO3oRVV101XH/99TV1CJL2opddFvpOnRpeHTw4vDBgQPj2TK9CyNfaUFtzPsiGfT/5yU9qLth4UFqJ1pKPLQvRoEapF63PwpYvE62vTNm8aH15ZatG67NlEURpU71ofXnXLhOtryvwfy3pBjCNuPHGG6OEXQR0c3feeWctqSiG//fff3/hwEBHYKSyH4ej2YGwolkqpD2jX79I1nw/3b9/VF1AoEh2SHXE0kBNIMla30qki7oEyS8N3epoTnTroiMqDka9LNWJxSGHHBIJd6mlloqjIiPwcccdFwYNGpRbZtSoUeHoo4/uhlo7HLMPqBoQdMCil1xSI2u+l5k4Mbz4i19EyU0SNr8hZEmwaRJeJEPIG+JGlelobnQrYV944YWRdNNpTIo//OEP4bLLLguXX3551GE/9dRTYb/99otTkB122CGzzKGHHhoOOOCA2jaEbwPMOBzNCKbh6GEha9Qhr++4Y5S02V56woTwyaefhte22y7qWtGrItwgPTPjRLLGwQa1g3SwxA7BQgQdLaoR6bCLsq+kOthUh41+m+t0JOMM50XytxJ/UcYZtq0O++2CjDMshqISsRlnUh12vYwzNlpfqsO2awBFbc66fzbaYUNG65s8eXIMm2hjI+QB6xGk7F/96ldxm/i/3ACk6DzC5mamGS8cjlbALm+9FRZ/4IEaWQO+IZOV/vjHsPB3vhPmGziwbsYZCAjCXHHFFaP+Os2Ykpd9JdXBesaZ0PoZZ8aNGxdDN5aZhjG62Zuqm239+B2O3oLvLrJIuPM73wl9ZpK18I/ddw9PzZgR5vj738N7r72WmXEGgka6Q0qHKDbeeONIcpKOHc2NyoTNKC9TFoBtIioMjPIVx5cR5KqrrgqnnHJK5jnWX3/9sOWWW4ahQ4fG7c033zzqrCmPSuTJJ58Mp556ajQddDh6Gxa76KKo7hs1832y79qHw4ZFya1MxhkAqaMWceGnlxI2NtKY6QnSI6O6mDBhQvx9xRVXRD3Rtttum3kOdGnYTApjx44NI0aMCHvttVctldHuu+8ejjjiiI60yeFoaqA+QP9qnTwAv5GamY0ytU9TeUHOgHLYOpOIgG90u5jOsqApKJOKYN9HpPRUZWGB2sHOiNPsK0XBmlAzWLM+rpXqf/PQp0+fWdpsY3kzU19iiSXa7bfXTttsvT1R3VhTxTQ8QNpmVDu23kVme7S5q8z6+rR1JnRUA4FOg1TBdDD1vHI4mg2DBw8O66yzTjv/BS244YTB//R1+jyqEGanbKOGRCBSGFZUIZALZI75rF00U3n9pqxg03Rp0dG+V7ZsWt6WVYqwNHRrXtm0PKSIHrojZd944404SFmyLNvmdNGxSpu16Kg0aGlZdOVkEeoIV3ksEYejAbHhhhvGMBCWsHnhkSKVmiqNi42jGTNUBXdi/yqrrBK3IUxI3C6a2fJWzQls5L8yKcJseVu2TIqwomurbR0pO0edFGFFZcukCMtrs6cIczh6Gbbeeutw3nnntftPC4lIjGlUPpEj+mokS/YjyeHmjWONzzpbA07YDkcDQk4vmJsppgfSNVN0HMyQ1rLiX6Onlcs0+uHnnnsumvrxm6m69MdI3RC8dMb2N+C3tvlGStU2102Pt9u2LP8jceYdW287LfupOXfWdlZZK2Hn1TOrLPfImi7a/ek9SO9XUZtlk94ROGE7HA0KFvfJ5bjWWmvFbRbFCOikBUl0y0jbeZlmUGVgvYX+mmk4OlPUGujCISK5uQPOZU3/5HwDtNApSxPIyu5Pt7mOfjNQsE+DTr1rFZ2r3nZWWRZTUY1k7be/03rxG5WInHTSsml5Ww+pRJTwOD22aGG1HpywHY4GXnjcf//9a4QNOUOaEC3ZZ9DP5mWYSc38IHsICIkd01kIlP+lZ4VkrM7VbmPHneqwIR17vN22ZZEm5UKfde6s7bxzVS3LYMGio5Wwy56be5XqsNM22+PT35B13rGuw3Y4WjgQVGpihloEvTSkgMTNB0iCs5I2emxIE6ka8oH8JXE6mg9O2A5HA+MHP/hBlBSxqQaQt8zciG6J9QXu1HkSts04w2/MzzA3SwPwO5oDTtgORwMDiZiY8liNKPCSpG300Kgb0Lc+++yz7ab+kLzVvwKIG4cYdOCEZeUYmfnZbCuoXYqyoqCv5RwqmzqzKOhRFqgT+neVTWNzpFlf7Myira0t6uNtmdQJJ421bd1MuHe2vK0n5WybU/cUdNBEPVTZ1AnHnit1ksG6x7bZFx0djhYF3sLjx4/P3AcxQHCQ52qrrRZVIzbjDDpXvpGm+eZYyBY9NgSD1C69KhK4zTjDORWNLytaH5YnKqs0ZSrPtxbcsjLOoD+3ZQltUTbjzPTp09vphomdn2ackconjdaHaz8ORiqPp2OacUZtTh1nIGvbZgZHzpfV5qyMMxC8yjZktD6Hw9F5sOCHFK2FrBQQAwQHCUMuaTxsFiiRrCEYyAzXbSxHUicQjqmaccZ6TVbNOFOmbF60vs/llC0Trc+em/tWNeNMmXrnRetT2c6sIThhOxxNoBYhIBqu5VlQLA9IAZJBKoW4IFaICAkZaZP/bDwRR/OhZQhb0yZPFeZoNZAEZLfddouhipHe0ozm/PfDH/6wJiUy5ZaEiFSOJMn7gfSItAy5p8GOKKN3h/PZbX4zGEgyZBtJ1zqVpMfrN9ex23yjI7d66Lyy6fa0adMK9/NbscDtPknYRWWVvEDJD9hHHaVO0bFl6p3eP77t/dP/HQnj1DLBn9AxecYZh8PRLFBwql5J2IyqLIagx+qqUIZdCaUw4yH1lrgO3mZvc6vio060GcpFAkcnniZu6TUqERreDPo5Hm5v6dSCt7l3wNtcHh21g69G7w6Hw+GYbXDCdjgcjiaBE3YPgRX1I488sldlevc29w54m3sOLbPo6HA4HK0Ol7AdDoejSeCE7XA4HE0CJ2yHw+FoEjhhOxwOR5PACdvhcDiaBE7YdXDfffeFzTffPLqR4vJ+zTXXtNuPkc0RRxwRvvWtb8VAOxtssEF49dVXZznPjTfeGH784x/HYwhTOWDAgMLrlj1vq7SZ0J8HH3xwWG655WJUOa49ZMiQGG6glZ+zxR577BGvffrpp4dWb/OLL74Y+vfvHz3+eN6rrLJKLbVZK7b5X//6Vxg6dGj0xqYMmYR+97vfVa6/E3YdEMWLKGlnnXVW5v6TTjopnHHGGfHmP/LII7HzbbTRRu0yI1999dUxoepOO+0UA64/8MADYbvttiu8bpnztlKbCSBPhvARI0bE74kTJ4aXX345vtSt/JyFSZMmhYcffjgSSU9hdrWZNGVrrrlmWGqppcI999wTnnnmmfjciQDYqm0+4IADwi233BIuvfTSOFjtt99+kcCvu+66ag3ADttRDtyuSZMm1bZnzJjR9s1vfrNt9OjRtf8++OCDtrnmmqvt97//fdyeOnVq24ILLth2wQUXlL5OmfO2Wpuz8Oijj8br//Wvf21r5Tb//e9/j2Wfe+65tkUWWaTttNNOa+tp9GSbt9lmm7btt9++bXYj9GCbl1lmmbaRI0e2+2+llVZqGz58eKXzuITdCZAiiLRMTJsEpnhMlR566KG4jbRIHjmCU6244opxqrXJJpuE5557rlPnbbU2Z4FsKkxbiefcqm0myiTS2kEHHRSWWWaZ0CjorjbTXtQJZL5BciUmN+dMVROt9pxXX331KE1TlrHi7rvvjkmUN9xww0p1dMLuBHi4gCzUFmxr3+uvvx6/jzrqqHD44YeHG264Ieq81l133Zg6qKPnbbU2p2AKik6bnIazOwJcd7b5xBNPjKmjhg0bFhoJ3dVmckeizz3hhBPCxhtvHG677baw5ZZbhoEDB4Z77703tOpzHjt2bNRbo8MmsQRtRy2z9tprV6qjE3Y3Q9kvhg8fHrbaaqvwox/9KCZVRXK86qqrQiuis21mAZIs4Ugi55xzTmjVNv/P//xPGDNmTJgwYUJDxnDvjjarzBZbbBH233//sMIKK4RDDjkk/PznP+/QIlyz9G0ImzUKpGye+ymnnBL23nvvcMcdd1S6vhN2J6CEnW+//Xa7/9nWPqZMgNFVIGDM4osvnrsqXua8rdbmlKxJY3X77bfPdum6O9s8efLkKHGSyRspmw/t/s1vfhMWXXTR0IptJvM47bRlwNJLL90jViKzo82kDDvssMPCqaeeGi1USOfGguM222wTTj755FAFTtidwGKLLRYf5J133tkuEwWry6uttlrcZgTmgWLxYEnpL3/5S8zo3NHztlqbLVljRoXkMf/884dGQHe1Gd01FhJPPfVU7YOVCPrsW2+9NbRim1EHYMJnywD0uUV9o5nbPHXq1PhJs8uQ41ESe2lUWqLshfj444/bnnzyyfjhdp166qnxtywXTjjhhLavfOUrbddee23bM88807bFFlu0LbbYYm2ffPJJ7Rz77rtvXFm+9dZb21566aW2XXbZpe3rX/9623vvvVc7Zskll2ybOHFibbvMeVupzVOmTGnr379/20ILLdT21FNPtb311lu1z2effdaSbc5CT1qJzK4287tfv35t5513Xturr77aNnbs2LY55pijbfLkyS3b5nXWWSdaitx9991tr7/+etv48ePb5p577razzz67Uv2dsOuAG8yDTT877LBDzRRoxIgRbd/4xjei+c/666/f9vLLL7c7B2T0m9/8Jj7Ueeedt22DDTaIJlwWnJOHKJQ5byu1+c9//nPmNflQn1Zs8+wm7NnZ5nHjxrV973vfi6S1/PLLt11zzTUt3ea33nqrbccdd2z79re/HdsMoZ9yyinxelXg8bAdDoejSeA6bIfD4WgSOGE7HA5Hk8AJ2+FwOJoETtgOh8PRJHDCdjgcjiaBE7bD4XA0CZywHQ6Ho0nghO1wOBxNAidsh8PhaBI4YTscDkeTwAnb4XA4QnPg/wPmi8g5SGcVTQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1035,7 +1035,6 @@ "mdu.geometry.openboundarytolerance = 0.1\n", "mdu.geometry.bedlevuni = 5 # default of -5 may cause instabilities at coastline\n", "mdu.geometry.dxwuimin2d = 0.1 # improved stability in triangular network cells\n", - "mdu.geometry.stretchtype = -1 # overwrite to default until fix of https://github.com/Deltares/HYDROLIB-core/issues/691\n", "# create and add drypointsfile if there are any cells generated that will result in high orthogonality\n", "if len(illegalcells_gdf) > 0:\n", " illegalcells_polyfile = dfmt.geodataframe_to_PolyFile(illegalcells_gdf)\n", diff --git a/pyproject.toml b/pyproject.toml index 77035406..91cf0433 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -50,8 +50,8 @@ dependencies = [ "rws-ddlpy>=0.6.0", #pooch>=1.1.0 has attribute retrieve "pooch>=1.1.0", - #hydrolib-core>=0.8.0 supports many more mdu keywords and correct dimr_config.xml for parallel runs - "hydrolib-core>=0.8.0", + #hydrolib-core>=0.8.1 supports more mdu keywords, meshkernel v6, numpy v2 and python 3.13 + "hydrolib-core>=0.8.1", #meshkernel>=4.2.0 supports more gridded_samples dtypes and workarounds for non-orthogonal grids "meshkernel>=4.2.0", ]