-
Notifications
You must be signed in to change notification settings - Fork 152
/
hgemm_mma.cu
332 lines (295 loc) · 13.8 KB
/
hgemm_mma.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <vector>
#include <algorithm>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_bf16.h>
#include <cuda_fp8.h>
#include <mma.h>
#include <torch/types.h>
#include <torch/extension.h>
using namespace nvcuda;
#define WARP_SIZE 32
#define DEVICE_INLINE __device__ inline
#define HOST_DEVICE_INLINE __device__ __host__ inline
#define INT4(value) (reinterpret_cast<int4*>(&(value))[0])
#define FLOAT4(value) (reinterpret_cast<float4*>(&(value))[0])
#define HALF2(value) (reinterpret_cast<half2*>(&(value))[0])
#define BFLOAT2(value) (reinterpret_cast<__nv_bfloat162*>(&(value))[0])
#define LDST32BITS(value) (reinterpret_cast<half2*>(&(value))[0])
#define LDST64BITS(value) (reinterpret_cast<float2*>(&(value))[0])
#define LDST128BITS(value) (reinterpret_cast<float4*>(&(value))[0])
#define CP_ASYNC_COMMIT_GROUP() asm volatile("cp.async.commit_group;\n" ::)
#define CP_ASYNC_WAIT_ALL() asm volatile("cp.async.wait_all;\n" ::)
#define CP_ASYNC_WAIT_GROUP(n) asm volatile("cp.async.wait_group %0;\n" ::"n"(n))
// ca(cache all, L1 + L2): support 4, 8, 16 bytes, cg(cache global, L2): only support 16 bytes.
#define CP_ASYNC_CA(dst, src, bytes) asm volatile("cp.async.ca.shared.global.L2::128B [%0], [%1], %2;\n" ::"r"(dst), "l"(src), "n"(bytes))
#define CP_ASYNC_CG(dst, src, bytes) asm volatile("cp.async.cg.shared.global.L2::128B [%0], [%1], %2;\n" ::"r"(dst), "l"(src), "n"(bytes))
#define LDMATRIX_X1(R, addr) asm volatile("ldmatrix.sync.aligned.x1.m8n8.shared.b16 {%0}, [%1];\n" : "=r"(R) : "r"(addr))
#define LDMATRIX_X2(R0, R1, addr) asm volatile("ldmatrix.sync.aligned.x2.m8n8.shared.b16 {%0, %1}, [%2];\n" : "=r"(R0), "=r"(R1) : "r"(addr))
#define LDMATRIX_X4(R0, R1, R2, R3, addr) asm volatile("ldmatrix.sync.aligned.x4.m8n8.shared.b16 {%0, %1, %2, %3}, [%4];\n" : "=r"(R0), "=r"(R1), "=r"(R2), "=r"(R3) : "r"(addr))
#define LDMATRIX_X1_T(R, addr) asm volatile("ldmatrix.sync.aligned.x1.trans.m8n8.shared.b16 {%0}, [%1];\n" : "=r"(R) : "r"(addr))
#define LDMATRIX_X2_T(R0, R1, addr) asm volatile("ldmatrix.sync.aligned.x2.trans.m8n8.shared.b16 {%0, %1}, [%2];\n" : "=r"(R0), "=r"(R1) : "r"(addr))
#define LDMATRIX_X4_T(R0, R1, R2, R3, addr) asm volatile("ldmatrix.sync.aligned.x4.trans.m8n8.shared.b16 {%0, %1, %2, %3}, [%4];\n" : "=r"(R0), "=r"(R1), "=r"(R2), "=r"(R3) : "r"(addr))
#define HMMA16816(RD0, RD1, RA0, RA1, RA2, RA3, RB0, RB1, RC0, RC1) asm volatile("mma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3, %4, %5}, {%6, %7}, {%8, %9};\n" : "=r"(RD0), "=r"(RD1) : "r"(RA0), "r"(RA1), "r"(RA2), "r"(RA3), "r"(RB0), "r"(RB1), "r"(RC0), "r"(RC1))
HOST_DEVICE_INLINE
int div_ceil(int a, int b) { return (a % b != 0) ? (a / b + 1) : (a / b); }
// only 1 warp per block(32 threads), m16n8k16. A, B, C: all row_major.
template<const int MMA_M=16, const int MMA_N=8, const int MMA_K=16>
__global__ void hgemm_mma_m16n8k16_naive_kernel(half* A, half* B, half* C,
int M, int N, int K) {
const int bx = blockIdx.x;
const int by = blockIdx.y;
const int NUM_K_TILES = div_ceil(K, MMA_K);
constexpr int BM = MMA_M; // 16
constexpr int BN = MMA_N; // 8
constexpr int BK = MMA_K; // 16
__shared__ half s_a[MMA_M][MMA_K]; // 16x16
__shared__ half s_b[MMA_K][MMA_N]; // 16x8
__shared__ half s_c[MMA_M][MMA_N]; // 16x8
const int tid = threadIdx.y * blockDim.x + threadIdx.x; // within block
const int lane_id = tid % WARP_SIZE; // 0~31
// s_a[16][16], 每行16,每线程load 8,需要2线程,共16行,需2x16=32线程
const int load_smem_a_m = tid / 2; // row 0~15
const int load_smem_a_k = (tid % 2) * 8; // col 0,8
// s_b[16][8], 每行8,每线程load 8,需要1线程,共16行,需16线程,只需一半线程加载
const int load_smem_b_k = tid; // row 0~31, but only use 0~15
const int load_smem_b_n = 0; // col 0
const int load_gmem_a_m = by * BM + load_smem_a_m; // global m
const int load_gmem_b_n = bx * BN + load_smem_b_n; // global n
if (load_gmem_a_m >= M && load_gmem_b_n >= N) return;
uint32_t RC[2] = {0, 0};
#pragma unroll
for (int k = 0; k < NUM_K_TILES; ++k) {
// gmem_a -> smem_a
int load_gmem_a_k = k * BK + load_smem_a_k; // global col of a
int load_gmem_a_addr = load_gmem_a_m * K + load_gmem_a_k;
LDST128BITS(s_a[load_smem_a_m][load_smem_a_k]) = (
LDST128BITS(A[load_gmem_a_addr]));
// gmem_b -> smem_b
if (lane_id < MMA_K) {
int load_gmem_b_k = k * MMA_K + load_smem_b_k; // global row of b
int load_gmem_b_addr = load_gmem_b_k * N + load_gmem_b_n;
LDST128BITS(s_b[load_smem_b_k][load_smem_b_n]) = (
LDST128BITS(B[load_gmem_b_addr]));
}
__syncthreads();
uint32_t RA[4];
uint32_t RB[2];
// ldmatrix for s_a, ldmatrix.trans for s_b.
// s_a: (0,1)*8 -> 0,8 -> [(0~15),(0,8)]
uint32_t load_smem_a_ptr = __cvta_generic_to_shared(
&s_a[lane_id % 16][(lane_id / 16) * 8]);
LDMATRIX_X4(RA[0], RA[1], RA[2], RA[3], load_smem_a_ptr);
uint32_t load_smem_b_ptr = __cvta_generic_to_shared(
&s_b[lane_id % 16][0]);
LDMATRIX_X2_T(RB[0], RB[1], load_smem_b_ptr);
HMMA16816(RC[0], RC[1], RA[0], RA[1], RA[2], RA[3], RB[0], RB[1], RC[0], RC[1]);
__syncthreads();
}
// s_c[16][8], https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
// #matrix-fragments-for-mma-m16n8k16-with-floating-point-type
// [0~7][0~3 u32 -> 0~7 f16], [8~15][0~3 u32 -> 0~7 f16]
LDST32BITS(s_c[lane_id / 4 ][(lane_id % 4) * 2]) = LDST32BITS(RC[0]);
LDST32BITS(s_c[lane_id / 4 + 8][(lane_id % 4) * 2]) = LDST32BITS(RC[1]);
__syncthreads();
// store s_c[16][8]
if (lane_id < MMA_M) {
// store 128 bits per memory issue.
int store_gmem_c_m = by * BM + lane_id;
int store_gmem_c_n = bx * BN;
int store_gmem_c_addr = store_gmem_c_m * N + store_gmem_c_n;
LDST128BITS(C[store_gmem_c_addr]) = (LDST128BITS(s_c[lane_id][0]));
}
}
// 128x128, mma2x4, warp4x4(64,32,16)
template<const int MMA_M=16,
const int MMA_N=8,
const int MMA_K=16,
const int MMA_TILE_M=2,
const int MMA_TILE_N=4,
const int WARP_TILE_M=4,
const int WARP_TILE_N=4,
const int A_PAD=0,
const int B_PAD=0>
__global__ void __launch_bounds__(256)
hgemm_mma_m16n8k16_mma2x4_warp4x4_kernel(
half* A, half* B, half* C, int M, int N, int K) {
const int bx = blockIdx.x;
const int by = blockIdx.y;
const int NUM_K_TILES = div_ceil(K, MMA_K);
constexpr int BM = MMA_M * MMA_TILE_M * WARP_TILE_M; // 16*2*4=128
constexpr int BN = MMA_N * MMA_TILE_N * WARP_TILE_N; // 8*4*4=128
constexpr int BK = MMA_K; // 16
__shared__ half s_a[BM][BK+A_PAD]; // 128*16*2=4KB
__shared__ half s_b[BK][BN+B_PAD]; // 16*128*2=4KB, 16*(128+16)*2=4.5KB
const int tid = threadIdx.y * blockDim.x + threadIdx.x; // within block
const int warp_id = tid / WARP_SIZE; // 0~7 warp_id within block
const int lane_id = tid % WARP_SIZE; // 0~31
const int warp_m = warp_id % 2; // 0,1
const int warp_n = warp_id / 2; // 0,1,2,3
// 先计算shared memory中的索引
// tid和需要加载的smem s_a[BM][BK] 之间的索引关系 BM=128 BK=16 按行读取 A行主序
// 对于s_a每行16个数据,每个线程读取8个,需要2个线程;总共128行,需要128x2刚好256线程
int load_smem_a_m = tid / 2; // row 0~127
int load_smem_a_k = (tid % 2 == 0) ? 0 : 8; // col 0,8
// tid和需要加载的smem s_b[BK][BN] 之间的索引关系 BK=16 BN=128 按行读取 B行主序
// 对于s_b每行128个数据,每个线程读8个数据,需要16个线程;总共16行,需要16x16=256个线程
int load_smem_b_k = tid / 16; // row 0~15
int load_smem_b_n = (tid % 16) * 8; // col 0,8,...,120
// 再计算全局内存中的索引
// 要加载到s_a中的元素对应到A全局内存中的行数 每个block负责出C中大小为BM*BN的块
int load_gmem_a_m = by * BM + load_smem_a_m; // global row of a and c
int load_gmem_b_n = bx * BN + load_smem_b_n; // global col of b and c
uint32_t RC[WARP_TILE_M][WARP_TILE_N][2];
#pragma unroll
for (int i = 0; i < WARP_TILE_M; ++i) {
#pragma unroll
for (int j = 0; j < WARP_TILE_N; ++j) {
RC[i][j][0] = 0;
RC[i][j][1] = 0;
}
}
#pragma unroll
for (int k = 0; k < NUM_K_TILES; ++k) {
// gmem -> smem
int load_gmem_a_k = k * BK + load_smem_a_k; // global col of a
int load_gmem_a_addr = load_gmem_a_m * K + load_gmem_a_k;
int load_gmem_b_k = k * BK + load_smem_b_k; // global row of b
int load_gmem_b_addr = load_gmem_b_k * N + load_gmem_b_n;
LDST128BITS(s_b[load_smem_b_k][load_smem_b_n]) = (
LDST128BITS(B[load_gmem_b_addr]));
LDST128BITS(s_a[load_smem_a_m][load_smem_a_k]) = (
LDST128BITS(A[load_gmem_a_addr]));
__syncthreads();
// ldmatrix for s_a, ldmatrix.trans for s_b.
uint32_t RA[WARP_TILE_M][4];
uint32_t RB[WARP_TILE_N][2];
// smem -> reg
#pragma unroll
for (int i = 0; i < WARP_TILE_M; ++i) {
int warp_smem_a_m = warp_m * (MMA_M * WARP_TILE_M) + i * MMA_M;
int lane_smem_a_m = warp_smem_a_m + lane_id % 16; // 0~15
int lane_smem_a_k = (lane_id / 16) * 8; // 0,8
uint32_t lane_smem_a_ptr = __cvta_generic_to_shared(
&s_a[lane_smem_a_m][lane_smem_a_k]);
LDMATRIX_X4(RA[i][0], RA[i][1], RA[i][2], RA[i][3], lane_smem_a_ptr);
}
#pragma unroll
for (int j = 0; j < WARP_TILE_N; ++j) {
int warp_smem_b_n = warp_n * (MMA_N * WARP_TILE_N) + j * MMA_N;
int lane_smem_b_k = lane_id % 16; // 0~15
int lane_smem_b_n = warp_smem_b_n; // 0, MMA_N=8
uint32_t lane_smem_b_ptr = __cvta_generic_to_shared(
&s_b[lane_smem_b_k][lane_smem_b_n]);
LDMATRIX_X2_T(RB[j][0], RB[j][1], lane_smem_b_ptr);
}
// MMA compute
#pragma unroll
for (int i = 0; i < WARP_TILE_M; ++i) {
#pragma unroll
for (int j = 0; j < WARP_TILE_N; ++j) {
HMMA16816(RC[i][j][0], RC[i][j][1],
RA[i][0], RA[i][1], RA[i][2], RA[i][3],
RB[j][0], RB[j][1],
RC[i][j][0], RC[i][j][1]);
}
}
__syncthreads();
}
// reg -> gmem, MMA_MxMMA_N=16x8
#pragma unroll
for (int i = 0; i < WARP_TILE_M; ++i) {
#pragma unroll
for (int j = 0; j < WARP_TILE_N; ++j) {
int store_warp_smem_c_m = warp_m * (MMA_M * WARP_TILE_M) + i * MMA_M;
int store_warp_smem_c_n = warp_n * (MMA_N * WARP_TILE_N) + j * MMA_N;
// mapping lane smem index -> global index.
// [16][8], https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
// #matrix-fragments-for-mma-m16n8k16-with-floating-point-type
// [0~7][0~3 u32 -> 0~7 f16], [8~15][0~3 u32 -> 0~7 f16]
int store_lane_gmem_c_m = by * BM + store_warp_smem_c_m + lane_id / 4;
int store_lane_gmem_c_n = bx * BN + store_warp_smem_c_n + (lane_id % 4) * 2;
int store_gmem_c_addr_0 = store_lane_gmem_c_m * N + store_lane_gmem_c_n;
int store_gmem_c_addr_1 = (store_lane_gmem_c_m + 8) * N + store_lane_gmem_c_n;
// TODO: how to use LDST128BITS here ? reverse the loop order ?
LDST32BITS(C[store_gmem_c_addr_0]) = LDST32BITS(RC[i][j][0]);
LDST32BITS(C[store_gmem_c_addr_1]) = LDST32BITS(RC[i][j][1]);
}
}
}
// --------------------- PyTorch bindings for custom kernel -----------------------
#define STRINGFY(str) #str
#define TORCH_BINDING_COMMON_EXTENSION(func) \
m.def(STRINGFY(func), &func, STRINGFY(func));
#define CHECK_TORCH_TENSOR_DTYPE(T, th_type) \
if(((T).options().dtype() != (th_type))) { \
std::cout << "Tensor Info:" << (T).options() << std::endl; \
throw std::runtime_error("values must be "#th_type); \
}
#define CHECK_TORCH_TENSOR_SHAPE(T, S0, S1) \
if (((T).size(0) != (S0)) || ((T).size(1) != (S1))) { \
throw std::runtime_error("Tensor size mismatch!"); \
}
// only 1 warp per block(32 threads), m16n8k16. A, B, C: all row_major.
void hgemm_mma_m16n8k16_naive(
torch::Tensor a, torch::Tensor b, torch::Tensor c) {
CHECK_TORCH_TENSOR_DTYPE(a, torch::kHalf)
CHECK_TORCH_TENSOR_DTYPE(b, torch::kHalf)
CHECK_TORCH_TENSOR_DTYPE(c, torch::kHalf)
const int M = a.size(0);
const int K = a.size(1);
const int N = b.size(1);
CHECK_TORCH_TENSOR_SHAPE(a, M, K)
CHECK_TORCH_TENSOR_SHAPE(b, K, N)
CHECK_TORCH_TENSOR_SHAPE(c, M, N)
constexpr int MMA_M = 16;
constexpr int MMA_N = 8;
constexpr int MMA_K = 16;
dim3 block(WARP_SIZE);
dim3 grid(div_ceil(N, MMA_N), div_ceil(M, MMA_M));
hgemm_mma_m16n8k16_naive_kernel<
MMA_M, MMA_N, MMA_K><<<grid, block>>>(
reinterpret_cast<half*>(a.data_ptr()),
reinterpret_cast<half*>(b.data_ptr()),
reinterpret_cast<half*>(c.data_ptr()),
M, N, K
);
}
// 128x128, mma2x4, warp4x4(64,32,16)
void hgemm_mma_m16n8k16_mma2x4_warp4x4(
torch::Tensor a, torch::Tensor b, torch::Tensor c) {
CHECK_TORCH_TENSOR_DTYPE(a, torch::kHalf)
CHECK_TORCH_TENSOR_DTYPE(b, torch::kHalf)
CHECK_TORCH_TENSOR_DTYPE(c, torch::kHalf)
const int M = a.size(0);
const int K = a.size(1);
const int N = b.size(1);
CHECK_TORCH_TENSOR_SHAPE(a, M, K)
CHECK_TORCH_TENSOR_SHAPE(b, K, N)
CHECK_TORCH_TENSOR_SHAPE(c, M, N)
constexpr int MMA_M = 16;
constexpr int MMA_N = 8;
constexpr int MMA_K = 16;
constexpr int MMA_TILE_M = 2;
constexpr int MMA_TILE_N = 4;
constexpr int WARP_TILE_M = 4;
constexpr int WARP_TILE_N = 4;
constexpr int A_PAD = 0;
constexpr int B_PAD = 16;
constexpr int NUM_THREADS= (
MMA_TILE_M * MMA_TILE_N * WARP_SIZE); // 2 * 4 * 32 = 256
dim3 block(NUM_THREADS);
dim3 grid(div_ceil(N, MMA_N * MMA_TILE_N * WARP_TILE_N),
div_ceil(M, MMA_M * MMA_TILE_M * WARP_TILE_M));
hgemm_mma_m16n8k16_mma2x4_warp4x4_kernel<
MMA_M, MMA_N, MMA_K, MMA_TILE_M, MMA_TILE_N,
WARP_TILE_M, WARP_TILE_N, A_PAD, B_PAD><<<grid, block>>>(
reinterpret_cast<half*>(a.data_ptr()),
reinterpret_cast<half*>(b.data_ptr()),
reinterpret_cast<half*>(c.data_ptr()),
M, N, K
);
}