-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dpsgd.py
executable file
·435 lines (360 loc) · 18.1 KB
/
train_dpsgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import os
# Code architecture.
# We create n processes one for each node/edge
# Communicate between processes using CPU MPI data transfers, yes this is slow
# But allows us to run multiple node/edge on a single GPU thus can emulate large number of nodes on a single machine
def main():
import argparse
import torch
import random
from utils.str2bool import str2bool
from utils.inference import inference
from utils.load_dataset import load_dataset
from utils.averagemeter import AverageMeter
from utils.instantiate_model import instantiate_model
from utils.graph_manager import GraphManager, GraphType
from torch.utils.tensorboard import SummaryWriter
import logging
import numpy as np
import json
from utils.qgm_optimizer import TensorBuffer, get_data
parser = argparse.ArgumentParser(description='Train', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Training parameters
parser.add_argument('--epochs', default=300, type=int, help='Set number of epochs')
parser.add_argument('--dataset', default='CIFAR10', type=str, help='Set dataset to use')
parser.add_argument('--lr', default=0.1, type=float, help='Learning Rate')
parser.add_argument('--test_accuracy_display', default=True, type=str2bool, help='Test after each epoch')
parser.add_argument('--optimizer', default='SGD', type=str, help='Optimizer for training')
parser.add_argument('--loss', default='crossentropy', type=str, help='Loss function for training')
parser.add_argument('--resume', default=False, type=str2bool, help='Resume training from a saved checkpoint')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay')
parser.add_argument("--network", default="ring", type=str)
# Decentralized params
parser.add_argument('--alpha', default=0.1, type=float, help='Parameter is alpha of Dirichlet Distribution. Divides the data index into n node subset')
parser.add_argument('--gamma', default=1.0, type=float, help='Gamma of DPSGD')
# Dataloader args
parser.add_argument('--train_batch_size', default=32, type=int, help='Train batch size')
parser.add_argument('--test_batch_size', default=32, type=int, help='Test batch size')
parser.add_argument('--val_split', default=0.0, type=float, help='Fraction of training dataset split as validation')
parser.add_argument('--augment', default=True, type=str2bool, help='Random horizontal flip and random crop')
parser.add_argument('--padding_crop', default=4, type=int, help='Padding for random crop')
parser.add_argument('--shuffle', default=True, type=str2bool, help='Shuffle the training dataset')
parser.add_argument('--random_seed', default=0, type=int, help='Initializing the seed for reproducibility')
# Model parameters
parser.add_argument('--save_seed', default=False, type=str2bool, help='Save the seed')
parser.add_argument('--use_seed', default=False, type=str2bool, help='For Random initialization')
parser.add_argument('--suffix', default='', type=str, help='Appended to model name')
parser.add_argument('--arch', default='resnet20evo', type=str, help='Network architecture')
# Summary Writer Tensorboard
parser.add_argument('--comment', default="", type=str, help='Comment for tensorboard')
parser.add_argument('--num_gpus', default=2, type=int, help='Number of GPUs available to train')
global args
args = parser.parse_args()
if args.dataset.lower() == 'imagenette':
args.arch = 'resnet20evonette'
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
np.random.seed(args.random_seed)
random.seed(args.random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
try:
version_list = list(map(float, torch.__version__.split(".")))
if version_list[0] <= 1 and version_list[1] < 8: ## pytorch 1.8.0 or below
torch.set_deterministic(True)
else:
torch.use_deterministic_algorithms(True)
except:
torch.use_deterministic_algorithms(True)
# Initialize Network Graph
graph_manager = GraphManager()
# Create a logger
logger = logging.getLogger(f'Train Logger {graph_manager.rank}')
logger.setLevel(logging.INFO)
handler = logging.FileHandler(os.path.join('./logs', f'dpsgd_{args.dataset.lower()}_node{graph_manager.rank}_alpha{args.alpha}_{args.suffix}.log'))
formatter = logging.Formatter(
fmt=f'%(asctime)s [{graph_manager.rank}] %(levelname)-8s %(message)s ',
datefmt='%Y-%m-%d %H:%M:%S')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.info(args)
graph_manager.set_logger(logger)
network_type = {
'ring': GraphType.Ring,
'social15': GraphType.Social_15
}
graph_manager.set_graph_type(network_type[args.network])
logger.info(f"Using network {network_type[args.network]} with {graph_manager.backend.world_size} nodes")
logger.info(f"{graph_manager.backend.rank}, {graph_manager.backend.world_size}, {graph_manager.backend.comm.Get_parent()}, {graph_manager.backend.comm.Get_group()}")
# Parameters
num_epochs = args.epochs
learning_rate = args.lr
gpu_id = graph_manager.rank % args.num_gpus
# Setup right device to run on
device = torch.device(f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu')
graph_manager.set_device(device)
logger.info('Dummy dataset creation to get size of the dataset etc')
dataset = load_dataset(
dataset=args.dataset,
train_batch_size=args.train_batch_size,
test_batch_size=args.test_batch_size,
val_split=0.0,
augment=args.augment,
padding_crop=args.padding_crop,
shuffle=False,
random_seed=args.random_seed,
logger=logger)
index, label_dist = graph_manager.partition_get_subset_idx(dataset, args.alpha)
# Use the following transform for training and testing
dataset = load_dataset(
dataset=args.dataset,
train_batch_size=args.train_batch_size,
test_batch_size=args.test_batch_size,
val_split=args.val_split,
augment=args.augment,
padding_crop=args.padding_crop,
shuffle=args.shuffle,
random_seed=args.random_seed,
logger=logger,
index=index)
class_count_train = {}
class_count_val = {}
for i in range(dataset.num_classes):
class_count_train[i] = 0
class_count_val[i] = 0
for _, labels in dataset.train_loader:
labels = labels.numpy()
for i in range(dataset.num_classes):
class_count_train[i] += np.where(labels == i)[0].shape[0]
for _, labels in dataset.val_loader:
labels = labels.numpy()
for i in range(dataset.num_classes):
class_count_val[i] += np.where(labels == i)[0].shape[0]
logger.info(f'Train class count {json.dumps(class_count_train)}')
logger.info(f'Val class count {json.dumps(class_count_val)}')
model_args = {}
if 'vit' in args.arch.lower():
model_args['image_size'] = dataset.img_dim
model_args['patch_size'] = 2
model_args['dim'] = 64
model_args['depth'] = 6 # Number of layers in the network
model_args['heads'] = 8 # Number of heads in the network
model_args['mlp_dim'] = 512
suffix = ''
for _, m_arg in model_args.items():
suffix += str(m_arg) + '_'
args.suffix = suffix + f'node{graph_manager.rank}_alpha{args.alpha}_' + args.suffix
# Instantiate model
net, model_name = instantiate_model(
dataset=dataset,
arch=args.arch,
suffix=args.suffix,
load=args.resume,
torch_weights=False,
device=device,
model_args=model_args,
logger=logger)
net_params = [
{
"params": [value],
"name": key,
"param_size": value.size(),
"nelement": value.nelement(),
}
for key, value in enumerate(net.parameters())
]
if args.use_seed:
if args.save_seed:
logger.info("Saving Seed")
torch.save(net.state_dict(),'./seed/' + args.dataset.lower() + '_' + args.arch + ".Seed")
else:
logger.info("Loading Seed")
net.load_state_dict(torch.load('./seed/'+ args.dataset.lower() +'_' + args.arch + ".Seed"))
else:
logger.info("Random Initialization")
# Optimizer
if args.optimizer.lower() == 'sgd':
optimizer = torch.optim.SGD(net_params,
momentum=0.9,
lr=learning_rate,
weight_decay=args.weight_decay)
elif args.optimizer.lower() == 'adagrad':
optimizer = torch.optim.Adagrad(net_params,
lr=learning_rate)
elif args.optimizer.lower() == 'adam':
optimizer = torch.optim.Adam(net_params,
lr=learning_rate)
else:
raise ValueError ("Unsupported Optimizer")
# Loss
criterion = torch.nn.CrossEntropyLoss()
if args.resume:
saved_training_state = torch.load('./pretrained/'+ args.dataset.lower()+'/temp/' + model_name + '.temp')
start_epoch = saved_training_state['epoch']
optimizer.load_state_dict(saved_training_state['optimizer'])
net.load_state_dict(saved_training_state['model'])
best_val_accuracy = saved_training_state['best_val_accuracy']
best_val_loss = saved_training_state['best_val_loss']
else:
start_epoch = 0
best_val_accuracy = 0.0
best_val_loss = float('inf')
net = net.to(device)
# Learning rate scheduler
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[int(0.6*args.epochs), int(0.8*args.epochs)],
gamma=0.1)
writer = SummaryWriter(comment=args.comment + f'node{graph_manager.rank}')
neighbors_weights = graph_manager.w[graph_manager.rank]
neighbors_rank = np.where(neighbors_weights > 0)[0]
param_names = list(
enumerate([group["name"] for group in optimizer.param_groups])
)
# Train model
for epoch in range(start_epoch, num_epochs, 1):
net.train()
train_correct = 0.0
train_total = 0.0
save_ckpt = False
losses = AverageMeter('Loss', ':.4e')
logger.info('')
for batch_idx, (data, labels) in enumerate(dataset.train_loader):
data = data.to(device)
labels = labels.to(device)
# Clears gradients of all the parameter tensors
optimizer.zero_grad()
out = net(data)
loss = criterion(out, labels)
loss.backward()
_ = graph_manager.comm_neigh(np.array([0]))
params, _ = get_data(optimizer.param_groups, param_names, is_get_grad=False)
grads, _ = get_data(optimizer.param_groups, param_names, is_get_grad=True)
flatten_params = TensorBuffer(params)
flatten_grads = TensorBuffer(grads)
np_param = flatten_params.buffer.cpu().numpy()
neighbors_weights = graph_manager.w[graph_manager.rank]
neighbors_rank = np.where(neighbors_weights > 0)[0]
recv_params = graph_manager.comm_neigh(np_param)
weighted_avg = np.zeros_like(np_param)
for neigh_idx, neigh_param in enumerate(recv_params):
n_rank = neighbors_rank[neigh_idx]
weighted_avg += neighbors_weights[n_rank] * neigh_param
flatten_grads.buffer.mul_(args.gamma)
flatten_params.buffer = torch.from_numpy(weighted_avg).to(device)
flatten_params.unpack(params)
flatten_grads.unpack(grads)
optimizer.step()
losses.update(loss.item())
train_correct += (out.max(-1)[1] == labels.argmax()).sum().long().item()
train_total += labels.shape[0]
if batch_idx % 48 == 0:
trainset_len = (1 - args.val_split) * len(dataset.train_loader.dataset)
curr_acc = 100. * train_total / trainset_len
logger.info(
'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch,
train_total,
trainset_len,
curr_acc,
losses.avg))
train_accuracy = float(train_correct) * 100.0 / float(train_total)
logger.info(
'Train Epoch: {} Accuracy : {}/{} [ {:.2f}%)]\tLoss: {:.6f}'.format(
epoch,
train_correct,
train_total,
train_accuracy,
losses.avg))
writer.add_scalar('Loss/train', losses.avg, epoch)
writer.add_scalar('Accuracy/train', train_accuracy, epoch)
# Step the scheduler by 1 after each epoch
scheduler.step()
val_correct, val_total, val_accuracy, val_loss = -1, -1, -1, -1
if args.val_split > 0.0:
val_correct, val_total, val_accuracy, val_loss = inference(
net=net,
data_loader=dataset.val_loader,
device=device,
loss=criterion)
writer.add_scalar('Accuracy/val', val_accuracy, epoch)
writer.add_scalar('Loss/val', val_loss, epoch)
if val_accuracy >= best_val_accuracy:
best_val_accuracy = val_accuracy
best_val_loss = best_val_loss
save_ckpt = True
else:
val_accuracy= float('inf')
save_ckpt = True
saved_training_state = {
'epoch' : epoch + 1,
'optimizer' : optimizer.state_dict(),
'model' : net.state_dict(),
'best_val_accuracy' : best_val_accuracy,
'best_val_loss' : best_val_loss
}
torch.save(saved_training_state, './pretrained/'+ args.dataset.lower() + '/temp/' + model_name + '.temp')
if save_ckpt:
logger.info("Saving checkpoint...")
torch.save(net.state_dict(), './pretrained/'+ args.dataset.lower()+'/' + model_name + '.ckpt')
if args.test_accuracy_display:
# Test model
# Set the model to eval mode
test_correct, test_total, test_accuracy = inference(
net=net,
data_loader=dataset.test_loader,
device=device)
logger.info("Training set accuracy: {}/{}({:.2f}%)".format(
train_correct,
train_total,
train_accuracy))
logger.info("Validation set accuracy: {}/{}({:.2f}%)".format(
val_correct,
val_total,
val_accuracy))
logger.info("Test set: Accuracy: {}/{} ({:.2f}%)".format(
test_correct,
test_total,
test_accuracy))
net.train()
logger.info("End of training without reusing Validation set")
logger.info('Waiting for other nodes still communicating')
while(1):
recv_arr = graph_manager.comm_neigh(np.array([1]))
if np.array(recv_arr).sum() == len(neighbors_rank):
break
for p in net.parameters():
np_param = p.data.clone().detach().cpu().numpy()
recv_params = graph_manager.comm_neigh(np_param)
with torch.no_grad():
for p in net.parameters():
np_param = p.data.clone().detach().cpu().numpy()
recv_params = graph_manager.comm_neigh(np_param)
weighted_avg = None
for neigh_idx, neigh_param in enumerate(recv_params):
n_rank = neighbors_rank[neigh_idx]
if weighted_avg is None:
weighted_avg = np.zeros_like(neigh_param)
weighted_avg += neighbors_weights[n_rank] * neigh_param
new_param_values = torch.Tensor(weighted_avg).to(device)
new_param_values.requires_grad_(False)
p.copy_(new_param_values)
saved_training_state = {
'epoch' : num_epochs,
'optimizer' : optimizer.state_dict(),
'model' : net.state_dict(),
'best_val_accuracy' : best_val_accuracy,
'best_val_loss' : best_val_loss
}
logger.info('Saving the final model')
torch.save(saved_training_state, './pretrained/'+ args.dataset.lower() + '/temp/' + model_name + '.temp')
torch.save(net.state_dict(), './pretrained/'+ args.dataset.lower()+'/' + model_name + '.ckpt')
test_correct, test_total, test_accuracy = inference(net=net, data_loader=dataset.test_loader, device=device)
logger.info('Test set: Accuracy: {}/{} ({:.2f}%)'.format(test_correct, test_total, test_accuracy))
logger.info(f'Comm bytes {graph_manager.comm_bytes}')
if __name__ == "__main__":
if os.name == 'nt':
# On Windows calling this function is necessary for multiprocessing
multiprocessing.freeze_support()
main()