-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
140 lines (127 loc) · 5.72 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
'''
Lists different models to be used throughout the project
'''
from keras.layers import Input, Dense, Reshape, Flatten, Dropout, multiply, Lambda
from keras.layers import BatchNormalization, Activation, Embedding, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2DTranspose, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.layers.convolutional import Convolution2D, UpSampling2D
import numpy as np
def lightweight_discriminator():
img_shape = (96, 10, 1)
test = np.ones((96,84,1))
test = np.reshape(test,(1,96,84,1))
model = Sequential()
model.add(Conv2D(64, kernel_size=[1,12], strides=[1,12], input_shape=img_shape, padding="VALID"))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2D(64, kernel_size=[1,7], strides=[1,7],padding="VALID"))
model.add(LeakyReLU(alpha=.2))
model.add(Conv2D(64, kernel_size=[2,1], strides=[2,1], padding="VALID"))
model.add(LeakyReLU(alpha=.2))
model.add(Conv2D(64, kernel_size=[2,1], strides=[2,1], padding="VALID"))
model.add(LeakyReLU(alpha=.2))
model.add(Conv2D(128, kernel_size=[4,1], strides=[2,1], padding="VALID"))
model.add(LeakyReLU(alpha=.2))
model.add(Conv2D(256, kernel_size=[3,1], strides=[2,1], padding="VALID"))
model.add(LeakyReLU(alpha=.2))
model.add(Flatten())
model.add(Dense(512))
model.add(LeakyReLU(alpha=.2))
model.add(Dense(1))
return model
def super_lightweight_discriminator():
model = Sequential()
model.add(Conv2D(32, kernel_size=[1,2], strides=[1,2], input_shape=img_shape, padding="VALID"))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2D(32, kernel_size=[1,3], strides=[1,3],padding="VALID"))
model.add(LeakyReLU(alpha=.2))
model.add(Conv2D(32, kernel_size=[2,1], strides=[2,1], padding="VALID"))
model.add(LeakyReLU(alpha=.2))
model.add(Conv2D(32, kernel_size=[2,1], strides=[2,1], padding="VALID"))
model.add(LeakyReLU(alpha=.2))
model.add(Conv2D(64, kernel_size=[4,1], strides=[2,1], padding="VALID"))
model.add(LeakyReLU(alpha=.2))
model.add(Conv2D(128, kernel_size=[3,1], strides=[2,1], padding="VALID"))
model.add(LeakyReLU(alpha=.2))
model.add(Flatten())
model.add(Dense(256))
model.add(LeakyReLU(alpha=.2))
model.add(Dense(1))
return model
def pix2pix_generator(input_shape):
encoder = Input(shape = input_shape)
print(encoder.shape)
encoder = Conv2D(32, kernel_size=[1,2], strides=[1,2], padding="VALID")(encoder)
encoder = BatchNormalization()(encoder)
encoder = Activation(LeakyReLU(alpha=.2))(encoder)
print("first conv")
print(encoder.shape)
encoder = Conv2D(32, kernel_size=[1,3], strides = [1,3], padding = "VALID")(encoder)
encoder = BatchNormalization()(encoder)
encoder = Activation(LeakyReLU(alpha=.2))(encoder)
print("second conv")
print(encoder.shape)
encoder = Conv2D(32, kernel_size=[2,1], strides=[2,1], padding="VALID")(encoder)
encoder = BatchNormalization()(encoder)
encoder = Activation(LeakyReLU(alpha=.2))(encoder)
print("third conv")
print(encoder.shape)
encoder = Conv2D(32, kernel_size=[2,1], strides=[2,1], padding="VALID")(encoder)
encoder = BatchNormalization()(encoder)
encoder = Activation(LeakyReLU(alpha=.2))(encoder)
print("fourth conv")
print(encoder.shape)
encoder = Conv2D(64, kernel_size=[4,1], strides=[2,1], padding="VALID")(encoder)
encoder = BatchNormalization()(encoder)
encoder = Activation(LeakyReLU(alpha=.2))(encoder)
print("fifth conv")
print(encoder.shape)
encoder = Conv2D(128, kernel_size=[3,1], strides=[2,1], padding="VALID")(encoder)
encoder = BatchNormalization()(encoder)
encoder = Activation(LeakyReLU(alpha=.2))(encoder)
print("sixth conv")
print(encoder.shape)
#now define the decoder
decoder = Conv2DTranspose(64, (3,1), strides = (2,1))(encoder)
decoder = BatchNormalization()(decoder)
decoder = Dropout(.5)(decoder)
decoder = Activation('relu')(decoder)
print("decoder first")
print(decoder.shape)
decoder = Conv2DTranspose(32, (4,1), strides = (2,1))(decoder)
decoder = BatchNormalization()(decoder)
decoder = Dropout(.5)(decoder)
decoder = Activation('relu')(decoder)
print("decoder second")
print(decoder.shape)
decoder = Conv2DTranspose(32, (2,1), strides = (2,1))(decoder)
decoder = BatchNormalization()(decoder)
decoder = Dropout(.5)(decoder)
decoder = Activation('relu')(decoder)
print("decoder third")
print(decoder.shape)
decoder = Conv2DTranspose(32, (2,1), strides = (2,1))(decoder)
decoder = BatchNormalization()(decoder)
decoder = Dropout(.5)(decoder)
decoder = Activation('relu')(decoder)
print("decoder fourth")
print(decoder.shape)
# decoder = Conv2DTranspose(32, (1,3), strides = (1,3))(decoder)
decoder = UpSampling2D(size=(1,5))(decoder)
decoder = Conv2D(32, kernel_size = [1,5], strides = [1,1],padding='same')(decoder)
decoder = BatchNormalization()(decoder)
decoder = Dropout(.5)(decoder)
decoder = Activation('relu')(decoder)
##need to add the last conv to complete decoder
print("decoder fifth")
print(decoder.shape)
decoder = UpSampling2D(size=(1,2))(decoder)
decoder = Conv2D(1, kernel_size = [1,5], strides = [1,1], padding='same')(decoder)
decoder = BatchNormalization()(decoder)
decoder = Dropout(.5)(decoder)
decoder = Activation('relu')(decoder)
#below might be an extra layer but following this repo https://github.com/williamFalcon/pix2pix-keras/blob/master/pix2pix/networks/generator.py
decoder = Conv2D(1, kernel_size = [1,10], strides = [1,1], padding='same')(decoder)
return decode