-
Notifications
You must be signed in to change notification settings - Fork 361
/
Copy pathadagrad.py
160 lines (143 loc) · 6.14 KB
/
adagrad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Adagrad for TensorFlow."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_array_ops
from tensorflow.python.ops import gen_hash_training_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import kv_variable_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.training import optimizer
from tensorflow.python.training import training_ops
from tensorflow.python.training import training_util
from tensorflow.python.training import slot_creator
from tensorflow.python.util.tf_export import tf_export
@tf_export(v1=["train.AdagradOptimizer"])
class AdagradOptimizer(optimizer.Optimizer):
"""Optimizer that implements the Adagrad algorithm.
See this [paper](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
or this
[intro](https://ppasupat.github.io/a9online/uploads/proximal_notes.pdf).
"""
def __init__(self, learning_rate, initial_accumulator_value=0.1,
use_locking=False, name="Adagrad"):
"""Construct a new Adagrad optimizer.
Args:
learning_rate: A `Tensor` or a floating point value. The learning rate.
initial_accumulator_value: A floating point value.
Starting value for the accumulators, must be positive.
use_locking: If `True` use locks for update operations.
name: Optional name prefix for the operations created when applying
gradients. Defaults to "Adagrad".
Raises:
ValueError: If the `initial_accumulator_value` is invalid.
@compatibility(eager)
When eager execution is enabled, `learning_rate` can be a callable that
takes no arguments and returns the actual value to use. This can be useful
for changing these values across different invocations of optimizer
functions.
@end_compatibility
"""
if initial_accumulator_value <= 0.0:
raise ValueError("initial_accumulator_value must be positive: %s" %
initial_accumulator_value)
super(AdagradOptimizer, self).__init__(use_locking, name)
self._learning_rate = learning_rate
self._initial_accumulator_value = initial_accumulator_value
# Created in Initialize.
self._learning_rate_tensor = None
def _create_slots(self, var_list):
for v in var_list:
dtype = v.dtype.base_dtype
if v.get_shape().is_fully_defined():
init = init_ops.constant_initializer(self._initial_accumulator_value,
dtype=dtype)
else:
init = self._init_constant_op(v, dtype)
self._get_or_make_slot_with_initializer(v, init, v.get_shape(), dtype,
"accumulator", self._name,
slot_config=slot_creator.SlotConfig(slot_index=1, slot_num=1))
def _init_constant_op(self, v, dtype):
def init():
# Use a Tensor instead of initializer if variable does not have
# static shape.
init_constant = gen_array_ops.fill(array_ops.shape(v),
self._initial_accumulator_value)
return math_ops.cast(init_constant, dtype)
return init
def _prepare(self):
learning_rate = self._call_if_callable(self._learning_rate)
self._learning_rate_tensor = ops.convert_to_tensor(
learning_rate, name="learning_rate")
global_step_var = training_util.get_or_create_global_step()
with ops.colocate_with(self._learning_rate_tensor):
self._global_step_on_worker = array_ops.identity(global_step_var) + 1
def _apply_dense(self, grad, var):
acc = self.get_slot(var, "accumulator")
return training_ops.apply_adagrad(
var,
acc,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
grad,
use_locking=self._use_locking)
def _resource_apply_dense(self, grad, var):
acc = self.get_slot(var, "accumulator")
return training_ops.resource_apply_adagrad(
var.handle,
acc.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype),
grad,
use_locking=self._use_locking)
def _apply_sparse(self, grad, var):
acc = self.get_slot(var, "accumulator")
return training_ops.sparse_apply_adagrad(
var,
acc,
math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype),
grad.values,
grad.indices,
use_locking=self._use_locking)
def _hash_table_apply_sparse(self, grad, var, indices):
acc = self.get_slot(var, "accumulator")
return gen_hash_training_ops.tensible_variable_apply_adagrad(
var.handle,
acc.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype),
grad,
indices,
use_locking=self._use_locking)
def _resource_apply_sparse(self, grad, var, indices):
acc = self.get_slot(var, "accumulator")
if isinstance(var, kv_variable_ops.EmbeddingVariable):
return training_ops.kv_resource_sparse_apply_adagrad(
var.handle,
acc.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype),
grad,
indices,
self._global_step_on_worker,
use_locking=self._use_locking)
else:
return training_ops.resource_sparse_apply_adagrad(
var.handle,
acc.handle,
math_ops.cast(self._learning_rate_tensor, grad.dtype),
grad,
indices,
use_locking=self._use_locking)