-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel.py
678 lines (565 loc) · 23.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
"""Combine all winner solutions in previous challenges (AutoCV, AutoCV2,
AutoNLP and AutoSpeech).
"""
import logging
import numpy as np
import os
import sys
import tensorflow as tf
import time
from numba import jit
from multiprocessing import Pool
here = os.path.dirname(os.path.abspath(__file__))
# model_dirs = ['', # current directory
# 'AutoCV/kakaobrain', # AutoCV/AutoCV2 winner model
# #'AutoNLP/upwind_flys', # AutoNLP 2nd place winner
# 'AutoNLP/DeepBlueAI',
# 'AutoSpeech/PASA_NJU', # AutoSpeech winner
# 'tabular_Meysam'] # simple NN model
# for model_dir in model_dirs:
# sys.path.append(os.path.join(here, model_dir))
#
#
# from AutoSpeech.PASA_NJU.model import Model as AutoSpeechModel
#
# #from AutoNLP.upwind_flys.model import Model as AutoNLPModel
# from AutoNLP.DeepBlueAI.model import Model as AutoNLPModel
#
# from tabular.model import Model as TabularModel
# from AutoCV.kakaobrain.model import Model as AutoCVModel
#
# DOMAIN_TO_MODEL = {'image': AutoCVModel,
# 'video': AutoCVModel,
# 'text': AutoNLPModel,
# 'speech': AutoSpeechModel,
# 'tabular': TabularModel}
model_dirs = ['', # current directory
'AutoCV/kakaobrain', # AutoCV winner model
'AutoCV2/kakaobrain2', # AutoCV2 winner model
'AutoNLP/DeepBlueAI', # AutoNLP 2nd place winner
'AutoSpeech/PASA_NJU', # AutoSpeech winner
'tabular'] # simple NN model
for model_dir in model_dirs:
sys.path.append(os.path.join(here, model_dir))
from AutoSpeech.PASA_NJU.model import Model as AutoSpeechModel
# from AutoNLP.upwind_flys.model import Model as AutoNLPModel
from AutoNLP.DeepBlueAI.model import Model as AutoNLPModel
# from tabular.model import Model as TabularModel
from tabular.model import Model as TabularModel
from AutoCV.kakaobrain.model import Model as AutoCVModel
from AutoCV2.kakaobrain2.model2 import Model2 as AutoCVModel2
DOMAIN_TO_MODEL = {'image': AutoCVModel,
'video': AutoCVModel2,
'text': AutoNLPModel,
'speech': AutoSpeechModel,
'tabular': TabularModel}
def my_token(x):
x = x.reshape(-1)
x = x[x > 0].astype(dtype = np.int)
tokens = [index_to_token[j] for j in x]
document = sep.join(tokens)
return document
class Model():
"""A model that combine all winner solutions. Using domain inferring and
apply winner solution in the corresponding domain."""
def __init__(self, metadata):
"""
Args:
metadata: an AutoDLMetadata object. Its definition can be found in
AutoDL_ingestion_program/dataset.py
"""
self.done_training = False
self.metadata = metadata
self.domain = infer_domain(metadata)
logger.info("The inferred domain of current dataset is: {}."\
.format(self.domain))
self.domain_metadata = get_domain_metadata(metadata, self.domain)
DomainModel = DOMAIN_TO_MODEL[self.domain]
self.domain_model = DomainModel(self.domain_metadata)
self.update_cnt = 0
self.train_X = None
self.test_X = None
self.label = None
self.sep = ''
self.tra_X = []
self.tra_Y = []
self.max_dup = 2
self.next_element = None
self.to_word = False
self.max_length = 1000
self.mini = True
def train(self, dataset, remaining_time_budget=None):
"""Train method of domain-specific model."""
# Convert training dataset to necessary format and
# store as self.domain_dataset_train
if self.domain =='speech':
self.domain_model.train(dataset,
remaining_time_budget=remaining_time_budget)
else:
start = time.time()
self.set_domain_dataset(dataset, is_training=True)
print ('###train set_domain_dataset(s):', time.time() - start)
# Train the model
self.domain_model.train(self.domain_dataset_train,
remaining_time_budget=remaining_time_budget)
# Update self.done_training
self.done_training = self.domain_model.done_training
def test(self, dataset, remaining_time_budget=None):
"""Test method of domain-specific model."""
# Convert test dataset to necessary format and
# store as self.domain_dataset_test
start = time.time()
self.set_domain_dataset(dataset, is_training=False)
print ('###test set_domain_dataset(s):', time.time() - start)
# As the original metadata doesn't contain number of test examples, we
# need to add this information
if self.domain in ['text', 'speech'] and\
(not self.domain_metadata['test_num'] >= 0):
self.domain_metadata['test_num'] = len(self.X_test)
# Make predictions
if self.domain == 'text':
Y_pred, self.to_word = self.domain_model.test(self.domain_dataset_test,
remaining_time_budget=remaining_time_budget)
else:
# Make predictions
Y_pred = self.domain_model.test(self.domain_dataset_test,
remaining_time_budget=remaining_time_budget)
self.update_cnt += 1
# Update self.done_training
self.done_training = self.domain_model.done_training
return Y_pred
##############################################################################
#### Above 3 methods (__init__, train, test) should always be implemented ####
##############################################################################
def to_numpy(self, dataset, is_training):
"""Given the TF dataset received by `train` or `test` method, compute two
lists of NumPy arrays: `X_train`, `Y_train` for `train` and `X_test`,
`Y_test` for `test`. Although `Y_test` will always be an
all-zero matrix, since the test labels are not revealed in `dataset`.
The computed two lists will by memorized as object attribute:
self.X_train
self.Y_train
or
self.X_test
self.Y_test
according to `is_training`.
WARNING: since this method will load all data in memory, it's possible to
cause Out Of Memory (OOM) error, especially for large datasets (e.g.
video/image datasets).
Args:
dataset: a `tf.data.Dataset` object, received by the method `self.train`
or `self.test`.
is_training: boolean, indicates whether it concerns the training set.
Returns:
two lists of NumPy arrays, for features and labels respectively. If the
examples all have the same shape, they can be further converted to
NumPy arrays by:
X = np.array(X)
Y = np.array(Y)
And in this case, `X` will be of shape
[num_examples, sequence_size, row_count, col_count, num_channels]
and `Y` will be of shape
[num_examples, num_classes]
"""
if is_training:
subset = 'train'
else:
subset = 'test'
attr_X = 'X_{}'.format(subset)
attr_Y = 'Y_{}'.format(subset)
# Only iterate the TF dataset when it's not done yet
if not (hasattr(self, attr_X) and hasattr(self, attr_Y)):
# # max_elems = np.iinfo(np.int64).max
dataset = dataset.padded_batch(128, padded_shapes=([None,1,1,1], [None]), padding_values=(tf.constant(-1, dtype=tf.float32)
,tf.constant(-1, dtype=tf.float32)))
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()
X = []
Y = []
with tf.Session(config=tf.ConfigProto(log_device_placement=False)) as sess:
# 开启一个协调器
coord = tf.train.Coordinator()
# 使用start_queue_runners 启动队列填充
threads = tf.train.start_queue_runners(sess, coord)
try:
while not coord.should_stop():
example, labels = sess.run(next_element)
X.extend(example)
Y.extend(labels)
except tf.errors.OutOfRangeError: #如果读取到文件队列末尾会抛出此异常
print("done! now lets kill all the threads……")
finally:
# 协调器coord发出所有线程终止信号
coord.request_stop()
print('all threads are asked to stop!')
coord.join(threads) #把开启的线程加入主线程,等待threads结束
print('all threads are stopped!')
setattr(self, attr_X, X)
setattr(self, attr_Y, Y)
# X = getattr(self, attr_X)
# Y = getattr(self, attr_Y)
return np.array(X), Y
def train_to_numpy(self, dataset, is_training):
"""Given the TF dataset received by `train` or `test` method, compute two
lists of NumPy arrays: `X_train`, `Y_train` for `train` and `X_test`,
`Y_test` for `test`. Although `Y_test` will always be an
all-zero matrix, since the test labels are not revealed in `dataset`.
The computed two lists will by memorized as object attribute:
self.X_train
self.Y_train
or
self.X_test
self.Y_test
according to `is_training`.
WARNING: since this method will load all data in memory, it's possible to
cause Out Of Memory (OOM) error, especially for large datasets (e.g.
video/image datasets).
Args:
dataset: a `tf.data.Dataset` object, received by the method `self.train`
or `self.test`.
is_training: boolean, indicates whether it concerns the training set.
Returns:
two lists of NumPy arrays, for features and labels respectively. If the
examples all have the same shape, they can be further converted to
NumPy arrays by:
X = np.array(X)
Y = np.array(Y)
And in this case, `X` will be of shape
[num_examples, sequence_size, row_count, col_count, num_channels]
and `Y` will be of shape
[num_examples, num_classes]
"""
if is_training:
subset = 'train'
else:
subset = 'test'
attr_X = 'X_{}'.format(subset)
attr_Y = 'Y_{}'.format(subset)
X = []
Y = []
batch_size = 128
N = batch_size
if self.update_cnt == 0:
#-----------
dataset = dataset.padded_batch(batch_size, padded_shapes=([None,1,1,1], [None]), padding_values=(tf.constant(-1, dtype=tf.float32)
,tf.constant(-1, dtype=tf.float32)))
iterator = dataset.make_one_shot_iterator()
self.next_element = iterator.get_next()
with tf.Session(config=tf.ConfigProto(log_device_placement=False)) as sess:
example, labels = sess.run(self.next_element)
# X.extend(example)
# Y.extend(labels)
N = np.sum(labels[:,0])
print ('###labels:', labels[:5])
#-----------
if N == batch_size:
print ('shuffle...')
iterator = dataset.shuffle(1024).shuffle(10000000).make_one_shot_iterator()
self.next_element = iterator.get_next()
N = -1
print ('###N:batch_size', N, batch_size)
# Only iterate the TF dataset when it's not done yet
# if not (hasattr(self, attr_X) and hasattr(self, attr_Y)):
# with tf.Session(config=tf.ConfigProto(log_device_placement=False)) as sess:
# while True:
# try:
# example, labels = sess.run(self.next_element)
# X.extend(example)
# Y.extend(labels)
# if N != batch_size and len(Y) > 1000:
# print ('###small data...')
# self.max_dup = 3
# break
# except tf.errors.OutOfRangeError:
# setattr(self, attr_X, X)
# setattr(self, attr_Y, Y)
# break
if not (hasattr(self, attr_X) and hasattr(self, attr_Y)):
with tf.Session(config=tf.ConfigProto(log_device_placement=False)) as sess:
# 开启一个协调器
coord = tf.train.Coordinator()
# 使用start_queue_runners 启动队列填充
threads = tf.train.start_queue_runners(sess, coord)
try:
while not coord.should_stop():
example, labels = sess.run(self.next_element)
X.extend(example)
Y.extend(labels)
if self.mini and N != batch_size and len(Y) > 2000:
self.mini = False
t = np.sum(Y, axis=0)
print ('###t0:', t)
t = len(t)*t/np.sum(t)
nan_rate = np.sum(t<0.032)/len(t)
print ('###nan_rate:', nan_rate)
if nan_rate < 0.16:
print ('###small data...')
self.max_dup = 3
for i in range(len(t)):
if t[i] == 0:
Y[i] = np.zeros(len(Y[0]))
Y[i][i] = 1
Y[i+150] = np.zeros(len(Y[0]))
Y[i+150][i] = 1
Y[i+500] = np.zeros(len(Y[0]))
Y[i+500][i] = 1
Y[i+900] = np.zeros(len(Y[0]))
Y[i+900][i] = 1
t = np.sum(Y, axis=0)
print ('###t1:', t)
break
except tf.errors.OutOfRangeError: #如果读取到文件队列末尾会抛出此异常
print("done! now lets kill all the threads……")
setattr(self, attr_X, X)
setattr(self, attr_Y, Y)
finally:
# 协调器coord发出所有线程终止信号
coord.request_stop()
print('all threads are asked to stop!')
coord.join(threads) #把开启的线程加入主线程,等待threads结束
print('all threads are stopped!')
# X = getattr(self, attr_X)
# Y = getattr(self, attr_Y)
return np.array(X), Y
def set_domain_dataset(self, dataset, is_training=True):
"""Recover the dataset in corresponding competition format (esp. AutoNLP
and AutoSpeech) and set corresponding attributes:
self.domain_dataset_train
self.domain_dataset_test
according to `is_training`.
"""
if is_training:
subset = 'train'
else:
subset = 'test'
attr_dataset = 'domain_dataset_{}'.format(subset)
if (not hasattr(self, attr_dataset)) or (self.domain == 'text' and self.update_cnt < self.max_dup) or (self.domain == 'text' and self.to_word): #2
logger.info("Begin recovering dataset format in the original " +
"competition for the subset: {}...".format(subset))
if self.domain == 'text':
# Get X, Y as lists of NumPy array
if self.max_dup == 3 and subset == 'test' and self.update_cnt == 1:
return
if self.update_cnt == 0 or (self.max_dup == 3 and subset == 'train' and self.update_cnt == 1):
start = time.time()
if subset == 'train':
X, Y = self.train_to_numpy(dataset, is_training=is_training)
else:
X, Y = self.to_numpy(dataset, is_training=is_training)
print (subset,'###to_numpy set_domain_dataset(s):', time.time() - start)
print ('###data size:', len(Y))
# Get separator depending on whether the dataset is in Chinese
if is_chinese(self.metadata):
self.sep = ''
else:
self.sep = ' '
start = time.time()
for i in range(len(X)):
X[i] = X[i].reshape(-1)
X[i] = X[i][X[i] > 0].astype(dtype = np.int)
#X[i] = X[i][X[i] > 0].astype(dtype = str)
print ('###reshape(s):', time.time() - start)
if subset == 'train':
if self.update_cnt == 0:
self.tra_Y = Y
self.tra_X = X
else:
X = np.concatenate((X, self.tra_X), axis=0)
Y = Y + self.tra_Y
if is_training:
self.label = Y
self.train_X = X
else:
self.test_X = X
corpus = []
corpus = X
print ('###index_to_token(s) for svm:', time.time() - start)
else: #for DNN
# Retrieve vocabulary (token to index map) from metadata and construct
# the inverse map
start = time.time()
if self.to_word == False:
#deal 1
print ('deal 1')
num_sentence = 0
if is_training:
X = self.train_X
num_sentence = len(X)
text_lens = np.zeros( len(X), dtype=np.int32 )
for i in range(len(X)):
text_lens[i] = len(X[i])
self.max_length = np.sort(text_lens)[int(num_sentence*0.92)] #0.95
else:
X = self.test_X
num_sentence = len(X)
corpus = np.zeros((num_sentence, self.max_length), dtype=np.int32)
for i in range(len(X)):
n = min(len(X[i]), self.max_length)
corpus[i][:n] = X[i][:n]
if is_training:
self.train_X = corpus
else:
self.test_X = corpus
print ('MAX_SEQ_LENGTH1:', self.max_length)
else:
#deal 2
print ('deal 2')
vocabulary = self.metadata.get_channel_to_index_map()
index_to_token = [None] * len(vocabulary)
for token in vocabulary:
index = vocabulary[token]
index_to_token[index] = token
corpus = []
if is_training:
X = self.train_X
else:
X = self.test_X
for x in X: # each x in X is a list of indices (but as float)
tokens = [index_to_token[int(i)] for i in x.astype(dtype = np.int) ]
document = self.sep.join(tokens)
corpus.append(document)
#------------------------------------
print ('###index_to_token(s) for dnn:', time.time() - start)
# Construct the dataset for training or test
if is_training:
labels = np.array(self.label)
domain_dataset = corpus, labels
else:
domain_dataset = corpus
# Set the attribute
setattr(self, attr_dataset, domain_dataset)
elif self.domain == 'speech':
# Get X, Y as lists of NumPy array
X, Y = self.to_numpy(dataset, is_training=is_training)
# Convert each array to 1-D array
X = [np.squeeze(x) for x in X]
# Construct the dataset for training or test
if is_training:
labels = np.array(Y)
domain_dataset = X, labels
else:
domain_dataset = X
# Set the attribute
setattr(self, attr_dataset, domain_dataset)
elif self.domain in ['image', 'video', 'tabular']:
setattr(self, attr_dataset, dataset)
else:
raise ValueError("The domain {} doesn't exist.".format(self.domain))
def infer_domain(metadata):
"""Infer the domain from the shape of the 4-D tensor.
Args:
metadata: an AutoDLMetadata object.
"""
row_count, col_count = metadata.get_matrix_size(0)
sequence_size = metadata.get_sequence_size()
channel_to_index_map = metadata.get_channel_to_index_map()
domain = None
if sequence_size == 1:
if row_count == 1 or col_count == 1:
domain = "tabular"
else:
domain = "image"
else:
if row_count == 1 and col_count == 1:
if len(channel_to_index_map) > 0:
domain = "text"
else:
domain = "speech"
else:
domain = "video"
return domain
def is_chinese(metadata):
"""Judge if the dataset is a Chinese NLP dataset. The current criterion is if
each word in the vocabulary contains one single character, because when the
documents are in Chinese, we tokenize each character when formatting the
dataset.
Args:
metadata: an AutoDLMetadata object.
"""
domain = infer_domain(metadata)
if domain != 'text':
return False
cnt = 0
for i, token in enumerate(metadata.get_channel_to_index_map()):
if len(token) == 1:
cnt += 1
if i >= 300:
break
if cnt > 150:
print ('ZH!!!')
return True
else:
print ('EN!!!')
return False
# for i, token in enumerate(metadata.get_channel_to_index_map()):
# if len(token) != 1:
# return False
# if i >= 300:
# break
# return True
def get_domain_metadata(metadata, domain, is_training=True):
"""Recover the metadata in corresponding competitions, esp. AutoNLP
and AutoSpeech.
Args:
metadata: an AutoDLMetadata object.
domain: str, can be one of 'image', 'video', 'text', 'speech' or 'tabular'.
"""
if domain == 'text':
# Fetch metadata info from `metadata`
class_num = metadata.get_output_size()
num_examples = metadata.size()
language = 'ZH' if is_chinese(metadata) else 'EN'
time_budget = 1200 # WARNING: Hard-coded
# Create domain metadata
domain_metadata = {}
domain_metadata['class_num'] = class_num
if is_training:
domain_metadata['train_num'] = num_examples
domain_metadata['test_num'] = -1
else:
domain_metadata['train_num'] = -1
domain_metadata['test_num'] = num_examples
domain_metadata['language'] = language
domain_metadata['time_budget'] = time_budget
return domain_metadata
elif domain == 'speech':
# Fetch metadata info from `metadata`
class_num = metadata.get_output_size()
num_examples = metadata.size()
# WARNING: hard-coded properties
file_format = 'wav'
sample_rate = 16000
# Create domain metadata
domain_metadata = {}
domain_metadata['class_num'] = class_num
if is_training:
domain_metadata['train_num'] = num_examples
domain_metadata['test_num'] = -1
else:
domain_metadata['train_num'] = -1
domain_metadata['test_num'] = num_examples
domain_metadata['file_format'] = file_format
domain_metadata['sample_rate'] = sample_rate
return domain_metadata
else:
return metadata
def get_logger(verbosity_level):
"""Set logging format to something like:
2019-04-25 12:52:51,924 INFO model.py: <message>
"""
logger = logging.getLogger(__file__)
logging_level = getattr(logging, verbosity_level)
logger.setLevel(logging_level)
formatter = logging.Formatter(
fmt='%(asctime)s %(levelname)s %(filename)s: %(message)s')
stdout_handler = logging.StreamHandler(sys.stdout)
stdout_handler.setLevel(logging_level)
stdout_handler.setFormatter(formatter)
stderr_handler = logging.StreamHandler(sys.stderr)
stderr_handler.setLevel(logging.WARNING)
stderr_handler.setFormatter(formatter)
logger.addHandler(stdout_handler)
logger.addHandler(stderr_handler)
logger.propagate = False
return logger
logger = get_logger('INFO')