-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_multi.py
76 lines (64 loc) · 2.33 KB
/
run_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import matplotlib.pyplot as plt
import os
import multiprocessing
import pandas as pd
# from funcs import log_likelihood
from rota import *
def run_multi_random(name, subdir='', runs=100):
print("Starting Chain {}".format(name))
b1 = Stochastic('b1', 0, 4)
b2 = Stochastic('b2', 0, 6)
b3 = Stochastic('b3', 0, 2.5)
b4 = Stochastic('b4', 0, 1)
b5 = Stochastic('b5', 0, 0.5)
A = Stochastic('A', 0, 10, initial=5)
offset = Stochastic('offset', 0, 10, cyclic=True)
vars = [b1, b2, b3, b4, b5, A, offset]
model = Model(vars)
extra = {'start': 0, 'end': 9, 'scaling_factor': 0.2, 'years_prior': 10,
'resolution': 4, 'save_path': './random_search/{}/'.format(subdir)}
try:
os.mkdir('./random_search/{}'.format(subdir))
except FileExistsError:
print('folder exists will overwrite')
mcmc = Rota('mcmc_mp_{}'.format(name), model, extra, rota_eq)
mcmc.save()
for run in range(runs):
mcmc.random_run()
return mcmc
def run_multi_sample(name, subdir='', runs=10000, load=False):
print("Starting Chain {}".format(name))
b1 = Stochastic('b1', 0, 10)
b2 = Stochastic('b2', 0, 10)
b3 = Stochastic('b3', 0, 10)
b4 = Stochastic('b4', 0, 10)
b5 = Stochastic('b5', 0, 10)
A = Stochastic('A', 0, 10)
offset = Stochastic('offset', 0, 10, cyclic=True)
vars = [b1, b2, b3, b4, b5, A, offset]
model = Model(vars)
extra = {'start': 0, 'end': 9, 'scaling_factor': 0.2, 'years_prior': 25,
'resolution': 4, 'save_path': './chains/{}/'.format(subdir)}
try:
os.mkdir('./chains/{}'.format(subdir))
except FileExistsError:
print('folder exists will overwrite')
mcmc = Rota('mcmc_mp_{}'.format(name), model, extra, rota_eq)
mcmc.save()
# for run in range(runs):
mcmc.sample(runs, 500)
return mcmc
if __name__ == '__main__':
n = 12
subdir = '0303c'
runs = 15000
pool = multiprocessing.Pool(n)
pool.starmap(run_multi_sample, zip([str(proc) for proc in range(n)],
n * [subdir],
n * [runs],
n * [False]))
pool.close()
pool.join()
# logger.info("start")
# mcmc = run_multi('a1','d',runs=1000)
# plot_against_data(mcmc.yhat_history[1],mcmc.ydata); plt.show()