-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
78 lines (64 loc) · 1.91 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import pandas as pd
import json
import os
import pickle
from sklearn.feature_extraction.text import TfidfVectorizer
#from data import load_data
import itertools
def find_product_name():
# def load_data(self):
# start = time.time()
dir_path = os.path.dirname(os.path.realpath(__file__))
data = getDF(dir_path + r"\meta_CDs_and_Vinyl.json")
with open("id_to_title.json", "w") as file:
data_map = {}
for asin, title in zip(data["asin"], data["title"]):
data_map[asin] = title
json.dump(data_map, file)
def parse(path):
g = open(path, 'rb')
for l in g:
yield json.loads(l)
def getDF( path):
i = 0
df = {}
for d in parse(path):
df[i] = d
i += 1
return pd.DataFrame.from_dict(df, orient='index')
def create_vectorizer(data):
# create corpus
corpus = []
for text in data["reviewText"]:
if type(text) == str:
corpus.append(text)
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(corpus)
with open("./pickles/tfidf_vectorizer.p", "wb") as outfile:
pickle.dump(X, outfile)
def split_into_words(sentences):
"""Splits multiple sentences into words and flattens the result"""
return list(itertools.chain(*[_.split(" ") for _ in sentences]))
def get_word_ngrams(n, sentences):
"""Calculates word n-grams for multiple sentences."""
assert len(sentences) > 0
assert n > 0
words = split_into_words(sentences)
return get_ngrams(n, words)
def get_ngrams(n, text):
"""Calcualtes n-grams.
Args:
which n-grams to calculate
text: An array of tokens
Returns:
set of n-grams
"""
ngram_set = set()
text_length = len(text)
max_index_ngram_start = text_length - n
for i in range(max_index_ngram_start + 1):
ngram_set.add(tuple(text[i:i + n]))
return ngram_set
if __name__ == "__main__":
data = load_data.Data()
create_vectorizer(data.data)