-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpapers.txt
51 lines (32 loc) · 1.78 KB
/
papers.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
genral intro to Tensor
https://arxiv.org/pdf/1306.2164.pdf :A Practical Introduction to Tensor Networks:
Matrix Product States and Projected Entangled Pair States
https://arxiv.org/pdf/1603.03039.pdf: TN:Hand-waving and Interpretive Dance
Cluster expansion
Time/thermal evolutuion
https://tensornetwork.org/mps/algorithms/timeevo/tebd.html: TEBD
Gibbs states:
https://arxiv.org/pdf/1406.2973.pdf : Approximating Gibbs states of local Hamiltonians efficiently with PEPS
Thermal ising
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.245107 :
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.245107
https://arxiv.org/abs/1602.02096 : Thermal Ising transitions in the vicinity of two-dimensional quantum critical points
https://arxiv.org/pdf/1209.0454.pdf : Projected Entangled Pair States at Finite Temperature: Imaginary Time Evolution with Ancillas
Quantum phases
quantum phase transitions - subir sachdev?
vumps:
https://biblio.ugent.be/publication/8519063/file/8519064 : Diagonalizing Transfer Matrices and Matrix Product Operators: A Medley of Exact and Computational Methods
https://arxiv.org/pdf/2003.01142.pdf : multisite vumps
https://scipost.org/SciPostPhysLectNotes.7/pdf : vumps for MPO
Tensor ring decomposition
https://arxiv.org/pdf/1606.05535.pdf
Time evolution
https://arxiv.org/pdf/1901.05824.pdf: Time-evolution methods for matrix-product states
https://fais.uj.edu.pl/documents/41628/111671067/PhD_Czarnik.pdf/d555e5eb-22ee-4cd2-89a8-960e4661073d :thesis about gibbs states,..
slides about PEPS
http://www.romanorus.com/Orus456.pdf
Quantum monte carlo
data collapse:
https://arxiv.org/abs/cond-mat/0505194 : subleading
https://arxiv.org/pdf/cond-mat/0509747.pdf : subleading ising
https://arxiv.org/pdf/1907.08603.pdf : A scaling hypothesis for matrix product states