-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlosses.py
347 lines (266 loc) · 12.4 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import torch
import torch.nn as nn
import sys
import numpy as np
import os
import pickle
from typing import List
import sys
script_path = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(script_path,"pyTorchChamferDistance"))
from chamfer_distance import ChamferDistance
# from utils import get_normals
LOSS_MAPPER = {"data":"DataLoss",
"partial_data": "PartialDataLoss",
"smooth":"SmoothnessLoss",
"landmark":"LandmarkLoss",
"normal":"NormalLoss",
}
class DataLoss(nn.Module):
def __init__(self,**kwargs):
super(DataLoss, self).__init__()
self.chamfer_dist = ChamferDistance()
def forward(self,scan_vertices,template_vertices,**kwargs):
'''
Directional Chamfer Distance from bm template to vertices
Sum the distances from every point of the template to the closest point
of the scan
:param scan_vertices: (torch.tensor) of N x 3 dim
:param template_vertices: (torch.tensor) of M x 3 dim
return: (float) sum of distances from every point of the
template to the closest point of the scan
'''
return self.chamfer_dist(scan_vertices,template_vertices)[1].sum()
class PartialDataLoss(nn.Module):
def __init__(self,partial_data_threshold: float,**kwargs):
super(PartialDataLoss, self).__init__()
self.chamfer_dist = ChamferDistance()
self.partial_data_threshold = partial_data_threshold
def forward(self,scan_vertices,template_vertices,**kwargs):
'''
Directional Chamfer Distance from template to vertices
Sum the distances from every point of the template to the closest point
of the scan if the distance is lower than partial_data_threshold.
:param scan_vertices: (torch.tensor) of N x 3 dim
:param template_vertices: (torch.tensor) of M x 3 dim
return: (float) sum of distances from every point of the
template to the closest point of the scan closer than
partial_data_threshold
'''
_, template2scan_dist, _ , _ = self.chamfer_dist(scan_vertices,template_vertices)
return template2scan_dist[template2scan_dist < self.partial_data_threshold].sum()
class SmoothnessLoss(nn.Module):
def __init__(self,body_models_path: str,**kwargs):
super(SmoothnessLoss, self).__init__()
neighbor_pairs_path = os.path.join(body_models_path,
"neighbor_pairs_indices.npy")
all_neighbors = np.load(neighbor_pairs_path)
self.all_neighbors = torch.from_numpy(all_neighbors).type(torch.long)
def forward(self,A,**kwargs):
'''
Difference between homo transformations between neighboring template
points
:param A: (torch.tensor) transformation matrix A of N x 4 x 4 dim
return: sum of Frobenious norms of the difference of each
neighborhood points (their transf matrices)
'''
diff = A[self.all_neighbors[:,0],:,:] - A[self.all_neighbors[:,1],:,:]
return torch.sum(torch.abs(diff)**2)
class LandmarkLoss(nn.Module):
def __init__(self, **kwargs):
super(LandmarkLoss, self).__init__()
def forward(self,scan_landmarks,template_landmarks,**kwargs):
"""
summed L2 norm between scan_landmarks and template_landmarks
:param scan_landmarks: (torch.tensor) dim (N,3)
:param template_landmarks: (torch.tensor) dim (N,3)
return: (float) summed L2 norm between scan_landmarks and
template_landmarks
"""
return torch.sum((scan_landmarks - template_landmarks)**2)
class NormalLoss(nn.Module):
def __init__(self,
normal_threshold_angle: float = None,
**kwargs):
super(NormalLoss, self).__init__()
self.normal_threshold_angle = normal_threshold_angle
self.chamfer_dist = ChamferDistance()
def forward(self,
scan_vertices,
template_vertices,
scan_normals,
template_normals,
**kwargs):
'''
For each template vertex i, find the closest nearest neighbors in the scan
and compute the angle between their normals and the normal at template vertex i.
Use distance between points if angle below normal_threshold_angle
:param scan_vertices: (torch.tensor) dim N x 3
:param template_vertices: (torch.tensor) dim M x 3
:param scan_normals: (torch.tensor) dim N x 3
:param template_normals: (torch.tensor) dim M x 3
:param angle_threshold: (float) angle threshold between normals
'''
# N = scan_vertices.shape[0]
cd_result = self.chamfer_dist(scan_vertices,template_vertices)
# dist_scan2template = cd_result[0]
dist_template2scan = cd_result[1].squeeze()
# ind_scan2template = cd_result[2]
ind_template2scan = cd_result[3].long().squeeze()
scan_normals_nn = scan_normals[ind_template2scan,:]
# inner_product = (a * b).sum(dim=1)
# a_norm = a.pow(2).sum(dim=1).pow(0.5)
# b_norm = b.pow(2).sum(dim=1).pow(0.5)
# cos = inner_product / (2 * a_norm * b_norm)
# angle = torch.acos(cos)
dot_prod = torch.sum(torch.mul(scan_normals_nn,
template_normals),dim=1)
angle = torch.acos(torch.clamp(dot_prod,-1,1)) # (K_knn)
angle_deg = torch.rad2deg(angle) # (K_knn)
inds = torch.where(angle_deg < self.normal_threshold_angle)[0]
return dist_template2scan[inds].sum()
class Losses(nn.Module):
"""
Loss class that combines multiple losses by weighting them and
summing them.
"""
def __init__(self, cfg: dict, loss_weights: dict,**kwargs):
super(Losses, self).__init__()
self.loss_names = cfg["use_losses"]
self.loss_tracker = LossTracker(self.loss_names)
self.loss_weights = loss_weights
self.current_loss_weights = loss_weights[0]
self.loss_fns = {}
for loss_name in self.loss_names:
loss_fn = eval(LOSS_MAPPER[loss_name])(**cfg)
self.loss_fns[loss_name] = loss_fn
def track_loss(self,loss_dict):
self.loss_tracker.update(loss_dict)
def update_loss_weights(self,iteration):
if iteration in self.loss_weights:
self.current_loss_weights = self.loss_weights[iteration]
def forward(self, **kwargs):
loss = {loss_name: self.current_loss_weights[loss_name] * loss_fn(**kwargs)
for loss_name, loss_fn in self.loss_fns.items()}
self.track_loss(loss)
loss = sum(loss.values())
return loss
class LossTracker():
def __init__(self,loss_names) -> None:
self.losses = {name:[] for name in loss_names}
self.losses["total"] = []
def update(self,losses):
for k,v in losses.items():
self.losses[k].append(v.detach().cpu().item())
def summed_L2(x: torch.tensor, y: torch.tensor):
"""
:param x: (torch.tensor) dim N x 3
:param y: (torch.tensor) dim N x 3
"""
return ((x-y)**2).sum(dim=1).sqrt().sum()
# PRIOR LOSS - FROM SMPLify paper
class MaxMixturePrior(nn.Module):
def __init__(self, prior_folder='prior',
num_gaussians=6, dtype=torch.float32, epsilon=1e-16,
use_merged=True,
**kwargs):
super(MaxMixturePrior, self).__init__()
if dtype == torch.float32:
np_dtype = np.float32
elif dtype == torch.float64:
np_dtype = np.float64
else:
print('Unknown float type {}, exiting!'.format(dtype))
sys.exit(-1)
self.num_gaussians = num_gaussians
self.epsilon = epsilon
self.use_merged = use_merged
gmm_fn = 'gmm_{:02d}.pkl'.format(num_gaussians)
full_gmm_fn = os.path.join(prior_folder, gmm_fn)
if not os.path.exists(full_gmm_fn):
print('The path to the mixture prior "{}"'.format(full_gmm_fn) +
' does not exist, exiting!')
sys.exit(-1)
with open(full_gmm_fn, 'rb') as f:
gmm = pickle.load(f, encoding='latin1')
if type(gmm) == dict:
means = gmm['means'].astype(np_dtype)
covs = gmm['covars'].astype(np_dtype)
weights = gmm['weights'].astype(np_dtype)
elif 'sklearn.mixture.gmm.GMM' in str(type(gmm)):
means = gmm.means_.astype(np_dtype)
covs = gmm.covars_.astype(np_dtype)
weights = gmm.weights_.astype(np_dtype)
else:
print('Unknown type for the prior: {}, exiting!'.format(type(gmm)))
sys.exit(-1)
self.register_buffer('means', torch.tensor(means, dtype=dtype))
self.register_buffer('covs', torch.tensor(covs, dtype=dtype))
precisions = [np.linalg.inv(cov) for cov in covs]
precisions = np.stack(precisions).astype(np_dtype)
self.register_buffer('precisions',
torch.tensor(precisions, dtype=dtype))
# The constant term:
sqrdets = np.array([(np.sqrt(np.linalg.det(c)))
for c in gmm['covars']])
const = (2 * np.pi)**(69 / 2.)
nll_weights = np.asarray(gmm['weights'] / (const *
(sqrdets / sqrdets.min())))
nll_weights = torch.tensor(nll_weights, dtype=dtype).unsqueeze(dim=0)
self.register_buffer('nll_weights', nll_weights)
weights = torch.tensor(gmm['weights'], dtype=dtype).unsqueeze(dim=0)
self.register_buffer('weights', weights)
self.register_buffer('pi_term',
torch.log(torch.tensor(2 * np.pi, dtype=dtype)))
cov_dets = [np.log(np.linalg.det(cov.astype(np_dtype)) + epsilon)
for cov in covs]
self.register_buffer('cov_dets',
torch.tensor(cov_dets, dtype=dtype))
# The dimensionality of the random variable
self.random_var_dim = self.means.shape[1]
def get_mean(self):
''' Returns the mean of the mixture '''
mean_pose = torch.matmul(self.weights, self.means)
return mean_pose
def merged_log_likelihood(self, pose, betas):
diff_from_mean = pose.unsqueeze(dim=1) - self.means
prec_diff_prod = torch.einsum('mij,bmj->bmi',
[self.precisions, diff_from_mean])
diff_prec_quadratic = (prec_diff_prod * diff_from_mean).sum(dim=-1)
curr_loglikelihood = 0.5 * diff_prec_quadratic - \
torch.log(self.nll_weights)
# curr_loglikelihood = 0.5 * (self.cov_dets.unsqueeze(dim=0) +
# self.random_var_dim * self.pi_term +
# diff_prec_quadratic
# ) - torch.log(self.weights)
min_likelihood, _ = torch.min(curr_loglikelihood, dim=1)
return min_likelihood
def log_likelihood(self, pose, betas, *args, **kwargs):
''' Create graph operation for negative log-likelihood calculation
'''
likelihoods = []
for idx in range(self.num_gaussians):
mean = self.means[idx]
prec = self.precisions[idx]
cov = self.covs[idx]
diff_from_mean = pose - mean
curr_loglikelihood = torch.einsum('bj,ji->bi',
[diff_from_mean, prec])
curr_loglikelihood = torch.einsum('bi,bi->b',
[curr_loglikelihood,
diff_from_mean])
cov_term = torch.log(torch.det(cov) + self.epsilon)
curr_loglikelihood += 0.5 * (cov_term +
self.random_var_dim *
self.pi_term)
likelihoods.append(curr_loglikelihood)
log_likelihoods = torch.stack(likelihoods, dim=1)
min_idx = torch.argmin(log_likelihoods, dim=1)
weight_component = self.nll_weights[:, min_idx]
weight_component = -torch.log(weight_component)
return weight_component + log_likelihoods[:, min_idx]
def forward(self, pose, betas, **kwargs):
if self.use_merged:
return self.merged_log_likelihood(pose, betas)
else:
return self.log_likelihood(pose, betas)