-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfit_body_model.py
342 lines (273 loc) · 13.5 KB
/
fit_body_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import torch
import numpy as np
from tqdm import tqdm
import os
from termcolor import colored
import argparse
from losses import ChamferDistance, MaxMixturePrior, summed_L2, LossTracker
from visualization import viz_error_curves, viz_iteration, set_init_plot, viz_final_fit
from utils import (check_scan_prequisites_fit_bm, cleanup,
load_config, save_configs,
load_landmarks,load_scan,
get_already_fitted_scan_names, get_skipped_scan_names,
initialize_fit_bm_loss_weights, load_loss_weights_config,
print_loss_weights, print_losses, print_params,
process_body_model_path, process_default_dtype,
process_landmarks, process_visualize_steps,
create_results_directory, to_txt,
setup_socket, send_to_socket,
)
from body_models import BodyModel
from body_parameters import BodyParameters
from datasets import FAUST, CAESAR
from dash_app import run_dash_app_as_subprocess
def fit_body_model(input_dict: dict, cfg: dict):
"""
Fit a body body model (SMPL/SMPLX) to the input scan using
data, landmark and prior losses
:param: input_dict (dict): with keys:
"name": name of the scan
"vertices": numpy array (N,3)
"faces": numpy array (N,3) or None if no faces
"landmarks": dictionary with keys as landmark names and
values as list [x,y,z] or np.ndarray (3,)
:param: cfg (dict): config file defined in configs/config.yaml
"""
DEFAULT_DTYPE = cfg['default_dtype']
VERBOSE = cfg['verbose']
VISUALIZE = cfg['visualize']
VISUALIZE_STEPS = cfg['visualize_steps']
VISUALIZE_LOGSCALE = cfg["error_curves_logscale"]
SAVE_PATH = cfg['save_path']
SOCKET_TYPE = cfg["socket_type"]
if VISUALIZE:
socket = cfg["socket"]
# inputs
input_name = input_dict["name"]
input_vertices = input_dict["vertices"]
input_faces = input_dict["faces"]
input_landmarks = input_dict["landmarks"]
input_index = input_dict["scan_index"]
# process inputs
input_vertices = torch.from_numpy(input_vertices).type(DEFAULT_DTYPE).unsqueeze(0).cuda()
input_faces = torch.from_numpy(input_faces).type(DEFAULT_DTYPE) if \
(not isinstance(input_faces,type(None))) else None
landmarks_order = sorted(list(input_landmarks.keys()))
input_landmarks = np.array([input_landmarks[k] for k in landmarks_order])
input_landmarks = torch.from_numpy(input_landmarks)
input_landmarks = input_landmarks.type(DEFAULT_DTYPE).cuda()
# setup body model
body_model = BodyModel(cfg)
body_model.cuda()
body_model_params = BodyParameters(cfg).cuda()
body_model_landmark_inds = body_model.landmark_indices(landmarks_order)
print(f"Using {len(input_landmarks)}/{len(body_model.all_landmark_indices)} landmarks.")
# configure optimization
ITERATIONS = cfg['iterations']
LR = cfg['lr']
START_LR_DECAY = cfg['start_lr_decay_iteration']
loss_weights = cfg['loss_weights']
loss_tracker = LossTracker(loss_weights[0].keys())
body_optimizer = torch.optim.Adam(body_model_params.parameters(), lr=LR)
chamfer_distance = ChamferDistance()
prior = MaxMixturePrior(prior_folder=cfg["prior_path"], num_gaussians=8)
prior = prior.cuda()
if VISUALIZE:
fig = set_init_plot(input_vertices[0].detach().cpu(),
body_model.verts_t_pose.detach().cpu(),
title=f"Fitting ({input_name}) - initial setup")
send_to_socket(fig, socket, SOCKET_TYPE)
iterator = tqdm(range(ITERATIONS))
for i in iterator:
if VERBOSE: print(colored(f"iteration {i}","red"))
if i in loss_weights.keys():
if VERBOSE: print(colored(f"\tChanging loss weights","red"))
data_loss_weight = loss_weights[i]['data']
landmark_loss_weight = loss_weights[i]['landmark']
prior_loss_weight = loss_weights[i]['prior']
beta_loss_weight = loss_weights[i]['beta']
if VERBOSE: print_loss_weights(data_loss_weight,landmark_loss_weight,
prior_loss_weight,beta_loss_weight,
"loss weights:")
# forward
pose, beta, trans, scale = body_model_params.forward()
if VERBOSE: print_params(pose,beta,trans,scale)
body_model_verts = body_model.deform_verts(pose,
beta,
trans,
scale)
# compute losses
dist1, dist2, _ , _ = chamfer_distance(body_model_verts.unsqueeze(0), input_vertices)
data_loss = (torch.mean(dist1)) + (torch.mean(dist2))
data_loss_weighted = data_loss_weight * data_loss
landmark_loss = summed_L2(body_model_verts[body_model_landmark_inds,:], input_landmarks)
landmark_loss_weighted = landmark_loss_weight * landmark_loss
prior_loss = prior.forward(pose[:, 3:], beta)
prior_loss_weighted = prior_loss_weight * prior_loss
beta_loss = (beta**2).mean()
beta_loss_weighted = beta_loss_weight * beta_loss
loss = data_loss_weighted + landmark_loss_weighted + prior_loss_weighted + beta_loss_weighted
loss_tracker.update({"data": data_loss_weighted,
"landmark": landmark_loss_weighted,
"prior": prior_loss_weighted,
"beta": beta_loss_weighted,
"total": loss})
if VERBOSE:
print_losses(data_loss,landmark_loss,prior_loss,beta_loss,"losses")
print_losses(data_loss_weighted,landmark_loss_weighted,
prior_loss_weighted,beta_loss_weighted,"losses weighted")
iterator.set_description(f"Loss {loss.item():.4f}")
# optimize
body_optimizer.zero_grad()
loss.backward()
body_optimizer.step()
if i >= START_LR_DECAY:
for param_group in body_optimizer.param_groups:
param_group['lr'] = LR*(ITERATIONS-i)/ITERATIONS
if VERBOSE: print(colored(f"\tlr: {param_group['lr']}","yellow"))
if VISUALIZE and (i in VISUALIZE_STEPS):
new_title = f"Fitting {input_name} - iteration {i}"
fig = viz_iteration(fig, body_model_verts.detach().cpu(), i , new_title)
send_to_socket(fig, socket, SOCKET_TYPE)
new_title = f"Fitting {input_name} losses - iteration {i}"
fig_losses = viz_error_curves(loss_tracker.losses, loss_weights,
new_title, VISUALIZE_LOGSCALE)
send_to_socket(fig_losses, socket, SOCKET_TYPE)
if VISUALIZE:
fig = viz_final_fit(input_vertices[0].detach().cpu(),
body_model_verts.detach().cpu(),
input_faces,
title=f"Fitting {input_name} - final fit")
send_to_socket(fig, socket, SOCKET_TYPE)
with torch.no_grad():
pose, beta, trans, scale = body_model_params.forward()
body_model_verts = body_model.deform_verts(pose, beta, trans, scale)
fitted_body_model_verts = body_model_verts.detach().cpu().data.numpy()
fitted_pose = pose.detach().cpu().numpy()
fitted_shape = beta.detach().cpu().numpy()
trans = trans.detach().cpu().numpy()
scale = scale.detach().cpu().numpy()
save_to = os.path.join(SAVE_PATH,f"{input_name}.npz")
np.savez(save_to,
body_model = body_model.body_model_name,
vertices=fitted_body_model_verts,
pose=fitted_pose,
shape=fitted_shape,
trans=trans,
scale=scale,
name=input_name,
scan_index=input_index)
def fit_body_model_onto_dataset(cfg: dict):
# get dataset
dataset_name = cfg["dataset_name"]
cfg_dataset = cfg[dataset_name]
cfg_dataset["use_landmarks"] = cfg["use_landmarks"]
dataset = eval(cfg["dataset_name"])(**cfg_dataset)
wait_after_fit_func = input if cfg["pause_script_after_fitting"] else print
wait_after_fit_func_text = "Fitting completed - press any key to continue!" \
if cfg["pause_script_after_fitting"] else "Fitting completed!"
# if continuing fitting process, get fitted and skipped scans
fitted_scans = get_already_fitted_scan_names(cfg)
skipped_scans = get_skipped_scan_names(cfg)
for i in range(len(dataset)):
input_example = dataset[i]
scan_name = input_example["name"]
print(f"Fitting scan {scan_name} -----------------")
if (scan_name in fitted_scans) or \
(scan_name in skipped_scans):
continue
process_scan = check_scan_prequisites_fit_bm(input_example)
if process_scan:
input_example["scan_index"] = i
fit_body_model(input_example, cfg)
else:
skipped_scans.append(input_example["name"])
to_txt(skipped_scans, cfg["save_path"], "skipped_scans.txt")
print(wait_after_fit_func_text)
wait_after_fit_func("-----------------------------------")
print(f"Fitting for {dataset_name} dataset completed!")
def fit_body_model_onto_scan(cfg: dict):
wait_after_fit_func = input if cfg["pause_script_after_fitting"] else print
scan_name = cfg["scan_path"].split("/")[-1].split(".")[0]
scan_vertices, scan_faces = load_scan(cfg["scan_path"])
scan_vertices = scan_vertices / cfg["scale_scan"]
landmarks = load_landmarks(cfg["landmark_path"],
cfg["use_landmarks"],
scan_vertices)
landmarks = {lm_name: (np.array(lm_coord) / cfg["scale_landmarks"]).tolist()
for lm_name, lm_coord in landmarks.items()}
input_example = {"name": scan_name,
"vertices": scan_vertices,
"faces": scan_faces,
"landmarks": landmarks,
}
process_scan = check_scan_prequisites_fit_bm(input_example)
if process_scan:
input_example["scan_index"] = 0
fit_body_model(input_example, cfg)
print(f"Fitting completed - press any key to continue!")
wait_after_fit_func("-----------------------------------")
if __name__ == "__main__":
# parse arguments
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(
help="Subparsers determine the fitting mode: onto_scan or onto_dataset.")
parser_scan = subparsers.add_parser('onto_scan')
parser_scan.add_argument("--scan_path", type=str, required=True)
parser_scan.add_argument("--scale_scan", type=float, default=1.0,
help="Scale (divide) the scan vertices by this factor.")
parser_scan.add_argument("--landmark_path", type=str, required=True)
parser_scan.add_argument("--scale_landmarks", type=float, default=1.0,
help="Scale (divide) the scan landmarks by this factor.")
parser_scan.set_defaults(func=fit_body_model_onto_scan)
parser_dataset = subparsers.add_parser('onto_dataset')
parser_dataset.add_argument("-D","--dataset_name", type=str, required=True)
parser_dataset.add_argument("-C", "--continue_run", type=str, default=None,
help="Path to results folder of YYYY_MM_DD_HH_MM_SS format to continue fitting.")
parser_dataset.set_defaults(func=fit_body_model_onto_dataset)
args = parser.parse_args()
# load configs
cfg = load_config()
cfg_optimization = cfg["fit_body_model_optimization"]
cfg_datasets = cfg["datasets"]
cfg_paths = cfg["paths"]
cfg_general = cfg["general"]
cfg_web_visualization = cfg["web_visualization"]
cfg_loss_weights = load_loss_weights_config(
which_strategy="fit_bm_loss_weight_strategy",
which_option=cfg_optimization["loss_weight_option"])
cfg_loss_weights = initialize_fit_bm_loss_weights(cfg_loss_weights)
# merge configs
cfg = {}
cfg.update(cfg_optimization)
cfg.update(cfg_datasets)
cfg.update(cfg_paths)
cfg.update(cfg_general)
cfg.update(cfg_web_visualization)
cfg.update(vars(args))
cfg["loss_weights"] = cfg_loss_weights
cfg["continue_run"] = cfg["continue_run"] if "continue_run" in cfg.keys() else None
# process configs
cfg["save_path"] = create_results_directory(cfg["save_path"],
cfg["continue_run"])
cfg = process_default_dtype(cfg)
cfg = process_visualize_steps(cfg)
cfg = process_landmarks(cfg)
cfg = process_body_model_path(cfg)
# check if landmarks to use are defined
assert cfg["use_landmarks"] != [], "Please define landmarks to use in config file!"
# save configs into results dir
save_configs(cfg)
# create web visualization
if cfg["visualize"]:
cfg["socket"] = setup_socket(cfg["socket_type"])
dash_app_process, dash_app_pid = run_dash_app_as_subprocess(cfg['socket_port'])
print(f"Fitting visualization on http://localhost:{cfg['socket_port']}/")
# wrapped in a try-except to make sure that the
# web visualization socket is closed properly
try:
args.func(cfg)
except (Exception,KeyboardInterrupt) as e:
print(e)
if cfg["visualize"]:
cleanup(cfg["visualize"], cfg["socket"], dash_app_process, dash_app_pid)