forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rec_multi_head.py
128 lines (116 loc) · 5.22 KB
/
rec_multi_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from ppocr.modeling.necks.rnn import Im2Seq, EncoderWithRNN, EncoderWithFC, SequenceEncoder, EncoderWithSVTR, trunc_normal_, zeros_
from .rec_ctc_head import CTCHead
from .rec_sar_head import SARHead
from .rec_nrtr_head import Transformer
class FCTranspose(nn.Layer):
def __init__(self, in_channels, out_channels, only_transpose=False):
super().__init__()
self.only_transpose = only_transpose
if not self.only_transpose:
self.fc = nn.Linear(in_channels, out_channels, bias_attr=False)
def forward(self, x):
if self.only_transpose:
return x.transpose([0, 2, 1])
else:
return self.fc(x.transpose([0, 2, 1]))
class AddPos(nn.Layer):
def __init__(self, dim, w):
super().__init__()
self.dec_pos_embed = self.create_parameter(
shape=[1, w, dim], default_initializer=zeros_)
self.add_parameter("dec_pos_embed", self.dec_pos_embed)
trunc_normal_(self.dec_pos_embed)
def forward(self,x):
x = x + self.dec_pos_embed[:, :paddle.shape(x)[1], :]
return x
class MultiHead(nn.Layer):
def __init__(self, in_channels, out_channels_list, **kwargs):
super().__init__()
self.head_list = kwargs.pop('head_list')
self.use_pool = kwargs.get('use_pool', False)
self.use_pos = kwargs.get('use_pos', False)
self.in_channels = in_channels
if self.use_pool:
self.pool = nn.AvgPool2D(kernel_size=[3, 2], stride=[3, 2], padding=0)
self.gtc_head = 'sar'
assert len(self.head_list) >= 2
for idx, head_name in enumerate(self.head_list):
name = list(head_name)[0]
if name == 'SARHead':
# sar head
sar_args = self.head_list[idx][name]
self.sar_head = eval(name)(in_channels=in_channels, \
out_channels=out_channels_list['SARLabelDecode'], **sar_args)
elif name == 'NRTRHead':
gtc_args = self.head_list[idx][name]
max_text_length = gtc_args.get('max_text_length', 25)
nrtr_dim = gtc_args.get('nrtr_dim', 256)
num_decoder_layers = gtc_args.get('num_decoder_layers', 4)
if self.use_pos:
self.before_gtc = nn.Sequential(
nn.Flatten(2), FCTranspose(in_channels, nrtr_dim), AddPos(nrtr_dim, 80))
else:
self.before_gtc = nn.Sequential(
nn.Flatten(2), FCTranspose(in_channels, nrtr_dim))
self.gtc_head = Transformer(
d_model=nrtr_dim,
nhead=nrtr_dim // 32,
num_encoder_layers=-1,
beam_size=-1,
num_decoder_layers=num_decoder_layers,
max_len=max_text_length,
dim_feedforward=nrtr_dim * 4,
out_channels=out_channels_list['NRTRLabelDecode'])
elif name == 'CTCHead':
# ctc neck
self.encoder_reshape = Im2Seq(in_channels)
neck_args = self.head_list[idx][name]['Neck']
encoder_type = neck_args.pop('name')
self.ctc_encoder = SequenceEncoder(in_channels=in_channels, \
encoder_type=encoder_type, **neck_args)
# ctc head
head_args = self.head_list[idx][name]['Head']
self.ctc_head = eval(name)(in_channels=self.ctc_encoder.out_channels, \
out_channels=out_channels_list['CTCLabelDecode'], **head_args)
else:
raise NotImplementedError(
'{} is not supported in MultiHead yet'.format(name))
def forward(self, x, targets=None):
if self.use_pool:
x = self.pool(x.reshape([0, 3, -1, self.in_channels]).transpose([0, 3, 1, 2]))
ctc_encoder = self.ctc_encoder(x)
ctc_out = self.ctc_head(ctc_encoder, targets)
head_out = dict()
head_out['ctc'] = ctc_out
head_out['ctc_neck'] = ctc_encoder
# eval mode
if not self.training:
return ctc_out
if self.gtc_head == 'sar':
sar_out = self.sar_head(x, targets[1:])
head_out['sar'] = sar_out
else:
gtc_out = self.gtc_head(self.before_gtc(x), targets[1:])
head_out['nrtr'] = gtc_out
return head_out