-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
21 lines (21 loc) · 813 Bytes
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import cv2, os
import numpy as np
from PIL import Image
recognizer = cv2.face.createLBPHFaceRecognizer()
detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml");
def getImagesAndLabels(path):
imagePaths = [os.path.join(path,f) for f in os.listdir(path)]
faceSamples=[]
ids = []
for imagePath in imagePaths:
PIL_img = Image.open(imagePath).convert('L')
img_numpy = np.array(PIL_img,'uint8')
id = int(os.path.split(imagePath)[-1].split(".")[1])
faces = detector.detectMultiScale(img_numpy)
for (x,y,w,h) in faces:
faceSamples.append(img_numpy[y:y+h,x:x+w])
ids.append(id)
return faceSamples,ids
faces,ids = getImagesAndLabels('dataset')
recognizer.train(faces, np.array(ids))
recognizer.save('trainer/trainer.yml')