-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdensity_maps.py
1153 lines (1004 loc) · 74.1 KB
/
density_maps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from dipy.io.gradients import read_bvals_bvecs
from dipy.io.streamline import load_tck, save_trk, save_tck, load_trk
from dipy.io.image import load_nifti_data, load_nifti, save_nifti
from AFQ.segmentation import Segmentation
from AFQ.segmentation import clean_bundle as seg_clean_bundle
from AFQ.api.bundle_dict import BundleDict, RECO_BUNDLES_80, BUNDLES, CALLOSUM_BUNDLES
from AFQ.definitions import scalar
from joblib import Parallel, delayed
# from cython.view import memoryview, array
from sklearn.cluster import AgglomerativeClustering
from sklearn.ensemble import VotingClassifier
from dipy.tracking.streamline import length
import AFQ.data as afd
import sys
import seaborn as sns
import gc
import warnings
import time
import joblib
import itertools
import scipy.optimize
import scipy.stats as sct
import bebi103
# from tracto import dipy_tracto
from sklearn.neighbors import KNeighborsClassifier
import pickle
from sklearn.decomposition import PCA
from dipy.denoise.enhancement_kernel import EnhancementKernel
from dipy.tracking.fbcmeasures import FBCMeasures
from AFQ.utils.streamlines import bundles_to_tgram
# from AFQ.viz.fury_backend import visualize_bundles
from dipy.io.streamline import load_tractogram, save_tractogram
from dipy.io.stateful_tractogram import StatefulTractogram, Space
import dipy.tracking.utils as dtu
from dipy.stats.analysis import afq_profile, gaussian_weights
from multiprocessing import Process, Queue
from dipy.tracking.streamline import set_number_of_points, values_from_volume
import nibabel as nib
import dipy.tracking.streamlinespeed as dps
import dipy.tracking.streamline as dts
import AFQ.registration as reg
from AFQ.tasks.utils import get_default_args
# from AFQ.viz.plotly_backend import single_bundle_viz
import dipy.core.gradients as dpg
from cmtk_stolen import *
from dipy.align.streamlinear import whole_brain_slr
import copy
import os
import json
import pickle, json
import bz2
import _pickle as cPickle
import os.path as op
import pandas as pd
import numpy as np
from dipy.align.bundlemin import distance_matrix_mdf
from dipy.io.image import load_nifti_data, load_nifti, save_nifti
from dipy.io.streamline import load_tck, load_trk, save_trk, save_tck
from dipy.direction import peaks
import matplotlib.pyplot as plt
import dipy.data as dpd
import copy
from wm_query import query
import multiprocessing
from joblib import Parallel, delayed
import dipy.tracking.streamline as dts
import dipy.tracking.streamlinespeed as dps
from dipy.viz import window, actor
from scipy.ndimage import binary_dilation, binary_erosion
from dipy.align.imaffine import (transform_centers_of_mass, AffineMap, MutualInformationMetric, AffineRegistration)
from dipy.align.transforms import (TranslationTransform3D, RigidTransform3D, AffineTransform3D)
from dipy.data import get_sphere
from dipy.reconst.csdeconv import (ConstrainedSphericalDeconvModel, auto_response_ssst, response_from_mask_ssst, mask_for_response_ssst, recursive_response)
from dipy.tracking.stopping_criterion import ThresholdStoppingCriterion, CmcStoppingCriterion
import dipy.direction.peaks as dp
from dipy.reconst import sfm
import AFQ.registration as dipy_syn_reg
import dipy.core.gradients as dpg
from dipy.tracking.streamline import set_number_of_points
from dipy.direction import ProbabilisticDirectionGetter, BootDirectionGetter
from dipy.data import default_sphere
from dipy.core.geometry import cart2sphere
from dipy.io.stateful_tractogram import Space, StatefulTractogram
from dipy.core.gradients import gradient_table
from dipy.data import get_fnames
from dipy.io.gradients import read_bvals_bvecs
from dipy.reconst import shm
from dipy.tracking import utils
from dipy.tracking.local_tracking import LocalTracking, ParticleFilteringTracking
from dipy.tracking.stopping_criterion import BinaryStoppingCriterion
from dipy.tracking.streamline import Streamlines
from cmtk_stolen import *
from pathlib import Path
import pandas as pd
import threading
import numpy as np
import datetime
import subprocess
import copy as cp
import pickle, json
import bz2
import _pickle as cPickle
import sys
import os
from dipy.tracking.utils import density_map
from dipy.stats.analysis import orient_by_streamline, values_from_volume
sys.setrecursionlimit(20971052)
threading.stack_size(134217728)
sys.settrace
my_f_path = "/CECI/proj/pilab/PermeableAccess/vertige_LEWuQhzYs9/PROJECT/"
my_f_path="/CECI/proj/pilab/PermeableAccess/vertige_LEWuQhzYs9/ELIKOPY_subset_new/PROJECT/"
my_f_path="/CECI/proj/pilab/PermeableAccess/vertige_LEWuQhzYs9/elikopy_subset_new2/PROJECT/"
# f_path="/CECI/proj/pilab/PermeableAccess/vertige_LEWuQhzYs9/ELIKOPY_subset/PROJECT/"
def _resample_tg(tg, n_points):
# reformat for dipy's set_number_of_points
if isinstance(tg, np.ndarray):
if len(tg.shape) > 2:
streamlines = tg.tolist()
streamlines = [np.asarray(item) for item in streamlines]
elif isinstance(tg, list):
print(tg)
if not isinstance(tg[0][0],list):
tg = [tg]
streamlines = [np.asarray(item) for item in tg]
print(streamlines)
else:
streamlines = [np.asarray(item) for item in list(tg.streamlines)]
return dps.set_number_of_points(streamlines, n_points)
def reorient(streamlines, nifti, f_path=my_f_path, trk_type="prob"):
ext = "" if trk_type=="prob" else "_det"
bundle = pd.read_csv("/auto/home/users/d/r/drimez/orders%s/labels.txt"%ext, sep=" ")
bundle = pd.DataFrame([ [lign__[0], float(lign__[1].replace(",","").replace("[","")),
float(lign__[2].replace("]",""))]
for lign__ in bundle.values], columns=bundle.columns)
streamlines.to_vox()
streamlines = streamlines.streamlines
start = np.nanmean([streamline[0] for streamline in streamlines], axis=0)
end = np.nanmean([streamline[-1] for streamline in streamlines], axis=0)
return_none = False
if len(streamlines[0])>3:
streamlines = [sl for sl in streamlines if len(sl)>2]
elif isinstance(list,streamlines[0][0]):
streamlines = [sl for sl in streamlines if len(sl)>2]
elif len(streamlines)>2:
streamlines = streamlines
else:
return_none = True
if not (np.linalg.norm(start-bundle.values[0,1])+np.linalg.norm(end-bundle.values[0,2])<np.linalg.norm(start-bundle.values[0,2])+np.linalg.norm(end-bundle.values[0,1])):
if len(streamlines[0])>3:
streamlines = [sl[::-1] for sl in streamlines if len(sl)>2]
elif isinstance(list,streamlines[0][0]):
streamlines = [sl[::-1] for sl in streamlines if len(sl)>2]
elif len(streamlines)>2:
streamlines = streamlines[::-1]
else:
return_none = True
if return_none:
return None, None
else:
trk = StatefulTractogram( streamlines,
nifti,
Space.VOX )
trk.to_rasmm()
return trk, trk.streamlines
def aggregate(list_of_dicts):
to_return = {str(key___).replace("'",""):[val___] for key___, val___ in list_of_dicts[0].items()}
keys_list = [*to_return.keys()]
for nd, dict_ in enumerate(list_of_dicts[1:]):
dict_ = {str(key___).replace("'",""):val___ for key___, val___ in dict_.items()}
this_keys_list = np.array([*dict_.keys()])
for one_key in keys_list:
if one_key in this_keys_list:
to_return[one_key].append(dict_[one_key])
else:
to_return[one_key].append(np.nan)
if len([_ for _ in this_keys_list if not (_ in keys_list)])>0:
for new_key in [_ for _ in this_keys_list if not (_ in keys_list)]:
to_return[new_key] = [np.nan for uuu in range(nd+1)]
to_return[new_key].append(dict_[new_key])
keys_list = [*to_return.keys()]
return to_return
def plot_performances(path, data_type, target):
perfs = []
if os.path.isdir(path) and len(path.split(data_type))==2 and len(path.split(target))==2:
list_dir = []
with os.scandir(path) as _:
for __ in _:
list_dir.append(__.path)
reliable_perfs = None ; params = None ; metrics = None
for file_path in list_dir:
if len(file_path.split("reliable"))==2 and (not len(file_path.split("unreliable"))==2):
reliable_perfs = pd.read_csv( file_path, sep="},", skiprows=0,
names=["fitted params","perfs"]).drop_duplicates()
perfs = []
if params is None:
params = [key for key in [_.split(": ")[0].replace("'","") for _ in (reliable_perfs.values[1,0]+"}").replace("{","").replace("}","").split(", ")]]
metrics = [key for key in [_.split(": ")[0].replace("'","") for _ in (reliable_perfs.values[1,1]+"}").replace("{","").replace("}","").split(", ")]]
for par, lign in zip(reliable_perfs.values[1:,0], reliable_perfs.values[1:,1]):
perf_params = {key:val for key, val in zip([_.split(": ")[0].replace("'","") for _ in (par+"}").replace("{","").replace("}","").split(", ")],
[_.split(": ")[1].replace("'","") for _ in (par+"}").replace("{","").replace("}","").split(", ")]) }
perf_metrics = {key:float(val) for key, val in zip([_.split(": ")[0].replace("'","") for _ in lign.replace("{","").replace("}","").split(", ")],
[_.split(": ")[1].replace("'","") for _ in lign.replace("{","").replace("}","").split(", ")]) }
perf_dict = dict( **perf_params,
**perf_metrics )
perfs.append(perf_dict)
for new_key in [_ for _ in [*perf_params.keys()] if not (_ in params)]:
params.append(new_key)
for new_key in [_ for _ in [*perf_metrics.keys()] if not (_ in metrics)]:
metrics.append(new_key)
perfs = aggregate(perfs)
perfs_df = pd.DataFrame(perfs,columns=[*perfs.keys()])
for x_axis in params:
if not x_axis=="scaler":
for y_axis in metrics:
print(x_axis,y_axis)
try:
fig, ax = plt.subplots(1,1)
sns.boxplot(x=x_axis, y=y_axis, hue="scaler", ax=ax)
if not os.path.exists("/auto/home/users/d/r/drimez/Classify_results/plots/%s/"%data_type):
os.makedirs("/auto/home/users/d/r/drimez/Classify_results/plots/%s/"%data_type)
plt.savefig("/auto/home/users/d/r/drimez/Classify_results/plots/%s/%s_vs_%s.png"%(data_type,x_axis, y_axis))
except Exception as err:
print(err)
def compare_models(root_path, target, age=True, threshold=0.05, type__="prob"):
perfs = [] ; params = None ; metrics = None ; models = [] ; figname = target
for age in [False,True]: #
for data_type in ["scale_pca","select"]:
with os.scandir(root_path) as my_iterator:
for my_entry in my_iterator:
path = my_entry.path
with_or_without_age = "_without_age" if age else "_"
this_data_type = my_entry.name.replace("_elast","").replace("_svm","").replace("_sgl","").replace("_"+target,"")
this_data_type = this_data_type.replace(with_or_without_age,"") if age else this_data_type
if os.path.isdir(path) and len(path.split(target))==2:
if len(this_data_type.split(data_type))==2:
split_list = my_entry.name.replace("_"+target+"_","").split("_")
model = (split_list[-1] + "_" + data_type + with_or_without_age).replace("scale_","")
print(my_entry.name)
models = np.unique(np.append(models,model))
list_dir = []
with os.scandir(path) as _:
for __ in _:
list_dir.append(__.path)
reliable_perfs = None
for file_path in list_dir:
if len(file_path.split("reliable"))==2 and (not len(file_path.split("unreliable"))==2) \
and np.any([True if len(_file_.split("results"))==2 else False for _file_ in list_dir]):
print("one pass:",file_path)
reliable_perfs = pd.read_csv( file_path, sep="},", skiprows=0,
names=["fitted params","perfs"]).drop_duplicates()
this_params = []
for this_par in reliable_perfs.values[1:,0]:
params_string = ""
for par_name, params_val in zip([_.split(": ")[0] for _ in (this_par+"}").replace("{","").replace("}","").split(", ")],
[_.split(": ")[1] for _ in (this_par+"}").replace("{","").replace("}","").split(", ")]):
params_string += str(par_name) + "=" + str(params_val) + "_"
this_params.append(params_string)
results_folder = np.array([True if len(_file_.split("results"))==2 else False for _file_ in list_dir])
success_folder = np.array(list_dir)[results_folder]
if isinstance(success_folder,list) or isinstance(success_folder,np.ndarray):
success_folder = success_folder[0]
success_file = os.listdir(success_folder) ; pvalues = []
for __pval in success_file:
for a_param in this_params:
if str(__pval).replace(".txt","").replace("b'","").replace("'","")==a_param.replace("'",""):
pvalues.append(pd.read_csv(success_folder+"/"+str(__pval).replace("b'","").replace("'","")).values[2,-1])
print(pvalues)
if params is None:
params = [key for key in [_.split(": ")[0].replace("'","").replace(" ","") for _ in (reliable_perfs.values[1,0]+"}").replace("{","").replace("}","").split(", ")]]
metrics = [key for key in [_.split(": ")[0].replace("'","").replace(" ","") for _ in (reliable_perfs.values[1,1]+"}").replace("{","").replace("}","").split(", ")]]
for par, lign, pvalue in zip(reliable_perfs.values[1:,0], reliable_perfs.values[1:,1],pvalues):
if pvalue<=threshold:
perf_params = {key:val for key, val in zip([_.split(": ")[0].replace("'","").replace(" ","") for _ in (par+"}").replace("{","").replace("}","").split(", ")],
[_.split(": ")[1].replace("'","").replace(" ","") for _ in (par+"}").replace("{","").replace("}","").split(", ")]) }
perf_metrics = {key:float(val) for key, val in zip([_.split(": ")[0].replace("'","").replace(" ","") for _ in lign.replace("{","").replace("}","").split(", ")],
[_.split(": ")[1].replace("'","").replace(" ","") for _ in lign.replace("{","").replace("}","").split(", ")]) }
perf_dict = dict( **{"model":model},
**perf_params,
**perf_metrics )
perfs.append(perf_dict)
for new_key in [_ for _ in [*perf_params.keys()] if not (_ in params)]:
params.append(new_key.replace("'","").replace(" ",""))
for new_key in [_ for _ in [*perf_metrics.keys()] if not (_ in metrics)]:
metrics.append(new_key.replace("'","").replace(" ",""))
if threshold==0.05:
if len(perfs)>0:
metrics_test = [_ for _ in metrics if len(_.split("test"))>1]
metrics_train = [_.replace("test","train") for _ in metrics_test]
metrics = [_.replace("test_","").replace("mean_","") for _ in metrics_test]
perfs = aggregate(perfs)
perfs_df = pd.DataFrame.from_dict(perfs)
if not os.path.exists("/auto/home/users/d/r/drimez/Classify_results/comp_reliable/%s/%s/"%(type__,figname)):
os.makedirs("/auto/home/users/d/r/drimez/Classify_results/comp_reliable/%s/%s/"%(type__,figname))
for y_axis_train, y_axis_test, y_name in zip(metrics_train,metrics_test,metrics):
try:
fig, ax = plt.subplots(1,2,figsize=(15,4))
ax = ax.flatten()
temp_df = pd.DataFrame(np.array([perfs_df[y_axis_train].values.flatten(),
perfs_df["model"].values.flatten()]).T,columns=[y_axis_train.replace("mean_",""),"model"]).dropna()
print(temp_df)
ax[0] = sns.boxplot(x="model", y=y_axis_train.replace("mean_",""), data=temp_df, ax=ax[0])
temp_df = pd.DataFrame(np.array([perfs_df[y_axis_test].values.flatten(),
perfs_df["model"].values.flatten()]).T,columns=[y_axis_test.replace("mean_",""),"model"]).dropna()
print(temp_df)
ax[1] = sns.boxplot(x="model", y=y_axis_test.replace("mean_",""), data=temp_df, ax=ax[1])
try:
ax[0].legend([],[], frameon=False)
sns.move_legend(ax[1], "upper left", bbox_to_anchor=(1, 1))
except Exception:
pass
plt.savefig("/auto/home/users/d/r/drimez/Classify_results/comp_reliable/%s/%s/%s_vs_%s.png"%(type__,figname,"model", y_name))
except Exception as err:
print(err)
for x_axis in params:
for y_axis_train, y_axis_test, y_name in zip(metrics_train,metrics_test,metrics):
try:
fig, ax = plt.subplots(1,2,figsize=(15,4))
ax = ax.flatten()
temp_df = pd.DataFrame(np.array([perfs_df[x_axis].values.flatten(),
perfs_df[y_axis_train].values.flatten(),
perfs_df["model"].values.flatten()]).T,columns=[x_axis,y_axis_train.replace("mean_",""),"model"]).dropna()
print(temp_df)
ax[0] = sns.boxplot(x=x_axis, y=y_axis_train.replace("mean_",""), hue="model", data=temp_df, ax=ax[0])
ax[0].legend([],[], frameon=False)
temp_df = pd.DataFrame(np.array([perfs_df[x_axis].values.flatten(),
perfs_df[y_axis_test].values.flatten(),
perfs_df["model"].values.flatten()]).T,columns=[x_axis,y_axis_test.replace("mean_",""),"model"]).dropna()
print(temp_df)
ax[1] = sns.boxplot(x=x_axis, y=y_axis_test.replace("mean_",""), hue="model", data=temp_df, ax=ax[1])
try:
ax[0].legend([],[], frameon=False)
sns.move_legend(ax[1], "upper left", bbox_to_anchor=(1, 1))
except Exception:
pass
plt.legend(labels = perfs_df["model"].values.flatten(),loc = 2, bbox_to_anchor = (1,1))
plt.savefig("/auto/home/users/d/r/drimez/Classify_results/comp_reliable/%s/%s/%s_vs_%s.png"%(type__,figname,x_axis, y_name))
except Exception as err:
print(err)
else:
print("no reliable models")
compare_models(root_path, data_type, target, threshold=1)
else:
if len(perfs)>0:
metrics_test = [_ for _ in metrics if len(_.split("test"))>1]
metrics_train = [_.replace("test","train") for _ in metrics_test]
metrics = [_.replace("test_","").replace("mean_","") for _ in metrics_test]
perfs = aggregate(perfs)
perfs_df = pd.DataFrame.from_dict(perfs)
if not os.path.exists("/auto/home/users/d/r/drimez/Classify_results/comp_unreliable/%s/%s/"%(type__,figname)):
os.makedirs("/auto/home/users/d/r/drimez/Classify_results/comp_unreliable/%s/%s/"%(type__,figname))
for y_axis_train, y_axis_test, y_name in zip(metrics_train,metrics_test,metrics):
try:
fig, ax = plt.subplots(1,2,figsize=(15,4))
ax = ax.flatten()
temp_df = pd.DataFrame(np.array([perfs_df[y_axis_train].values.flatten(),
perfs_df["model"].values.flatten()]).T,columns=[y_axis_train.replace("mean_",""),"model"]).dropna()
print(temp_df)
ax[0] = sns.boxplot(x="model", y=y_axis_train.replace("mean_",""), data=temp_df, ax=ax[0])
temp_df = pd.DataFrame(np.array([perfs_df[y_axis_test].values.flatten(),
perfs_df["model"].values.flatten()]).T,columns=[y_axis_test.replace("mean_",""),"model"]).dropna()
print(temp_df)
ax[1] = sns.boxplot(x="model", y=y_axis_test.replace("mean_",""), data=temp_df, ax=ax[1])
try:
ax[0].legend([],[], frameon=False)
sns.move_legend(ax[1], "upper left", bbox_to_anchor=(1, 1))
except Exception:
pass
plt.savefig("/auto/home/users/d/r/drimez/Classify_results/comp_unreliable/%s/%s/%s_vs_%s.png"%(type__,figname,"model", y_name))
except Exception as err:
print(err)
for x_axis in params:
for y_axis_train, y_axis_test, y_name in zip(metrics_train,metrics_test,metrics):
try:
fig, ax = plt.subplots(1,2,figsize=(15,4))
ax = ax.flatten()
temp_df = pd.DataFrame(np.array([perfs_df[x_axis].values.flatten(),
perfs_df[y_axis_train].values.flatten(),
perfs_df["model"].values.flatten()]).T,columns=[x_axis,y_axis_train.replace("mean_",""),"model"]).dropna()
print(temp_df)
ax[0] = sns.boxplot(x=x_axis, y=y_axis_train.replace("mean_",""), hue="model", data=temp_df, ax=ax[0])
ax[0].legend([],[], frameon=False)
temp_df = pd.DataFrame(np.array([perfs_df[x_axis].values.flatten(),
perfs_df[y_axis_test].values.flatten(),
perfs_df["model"].values.flatten()]).T,columns=[x_axis,y_axis_test.replace("mean_",""),"model"]).dropna()
print(temp_df)
ax[1] = sns.boxplot(x=x_axis, y=y_axis_test.replace("mean_",""), hue="model", data=temp_df, ax=ax[1])
try:
ax[0].legend([],[], frameon=False)
sns.move_legend(ax[1], "upper left", bbox_to_anchor=(1, 1))
except Exception:
pass
plt.legend(labels = perfs_df["model"].values.flatten(),loc = 2, bbox_to_anchor = (1,1))
plt.savefig("/auto/home/users/d/r/drimez/Classify_results/comp_unreliable/%s/%s/%s_vs_%s.png"%(type__,figname,x_axis, y_name))
except Exception as err:
print(err)
else:
print("no models")
def parc_rois(wmparc_path, selected_list, f_path=my_f_path, dens=None, path_prefix=None, folder__=None):
wmparc, affine = load_nifti(wmparc_path)
LUT = pd.read_csv("/auto/home/users/d/r/drimez/LUT.txt",sep=" ",header=None,index_col=False,names=["id","name","r","g","b","a"])
names = np.array([_.split('-')[-1] for _ in LUT["name"].values])
lut_index = np.arange(len(LUT["id"].values))
metrics = ["pc0","pc1"] if len(selected_list)==2 else ["FA","MD","AD","RD"]
folder = path_prefix + folder__
for ise, selected_rois in zip(metrics,selected_list):
new_wmparc = np.zeros_like(wmparc).astype(float)
if selected_rois=={}:
return None
for roi, value in selected_rois.items():
if not "_".join(roi.split("_")[:-2]) in ("UnsegmentedWhiteMatter","unknown"):
corresponding = lut_index[np.array(names=="_".join(roi.split("_")[:-2]))]
corresponding_indx = int(roi.split("_")[-2])
corresponding = corresponding[corresponding_indx]
label = LUT["id"].values[corresponding]
new_wmparc[wmparc==label] = value
if not os.path.isdir("/auto/home/users/d/r/drimez/Classify_results/wmparc/"):
os.makedirs("/auto/home/users/d/r/drimez/Classify_results/wmparc/")
new_wmparc_1 = copy.copy(new_wmparc)
new_wmparc_1[new_wmparc<0] = 0
min_1, max_1 = np.abs([new_wmparc_1.min(),new_wmparc_1.max()])
new_wmparc_2 = copy.copy(new_wmparc)
new_wmparc_2[new_wmparc>0] = 0
new_wmparc_2 = -new_wmparc_2
new_wmparc_2 += new_wmparc_1
min_2, max_2 = np.abs([new_wmparc_2.min(),new_wmparc_2.max()])
max_ = np.max([max_1,max_2])
path_prefix_ = "" if path_prefix is None else path_prefix + "_"
path_1 = "/auto/home/users/d/r/drimez/Classify_results/" + path_prefix_ + "wmparc_significant"
path_2 = "/auto/home/users/d/r/drimez/Classify_results/" + path_prefix_ + "wmparc_unsignificant"
save_nifti(path_1+".nii.gz",new_wmparc_1,affine)
save_nifti(path_2+".nii.gz",new_wmparc_2,affine)
if not os.path.isdir("/auto/home/users/d/r/drimez/Classify_results/wmparc/"+folder+"/"):
os.makedirs("/auto/home/users/d/r/drimez/Classify_results/wmparc/"+folder+"/")
t1_path = "/".join(wmparc_path.split("/")[:-3]) + "/%s_T1_corr_projected"%wmparc_path.split("/")[-4]
t1_path = "/CECI/proj/pilab/PermeableAccess/vertige_LEWuQhzYs9/elikopy_subset_new2/PROJECT/subjects/C_1/T1/C_1_T1_corr_projected"
bshcmd = "cd /auto/home/users/d/r/drimez/Classify_results/wmparc/ ;"
bshcmd += "fsleyes render --scene ortho --size 2000 2000 --hideCursor --crop 20 -of " + folder + "/results_ortho_%s.png "%ise + t1_path + " -a 50 " + path_1 + " -cm red-yellow -a 20 -dr %s %s "%(0,max_) + path_2 + " -cm blue-lightblue -a 70 -dr %s %s -in linear --logScale ; "%(0,max_)
bshcmd += "fsleyes render --scene lightbox --size 8000 8000 --hideCursor --crop 20 -zx X -ss 2 -nr 20 -nc 5 -of " + folder + "/side_results_light_%s.png "%ise + t1_path + " -a 50 " + path_1 + " -cm red-yellow -a 20 -dr %s %s "%(0,max_) + path_2 + " -cm blue-lightblue -a 70 -dr %s %s -in linear --logScale ; "%(0,max_)
bshcmd += "fsleyes render --scene lightbox --size 8000 8000 --hideCursor --crop 20 -zx Y -ss 3 -nr 20 -nc 5 -of " + folder + "/ant_results_light_%s.png "%ise + t1_path + " -a 50 " + path_1 + " -cm red-yellow -a 20 -dr %s %s "%(0,max_) + path_2 + " -cm blue-lightblue -a 70 -dr %s %s -in linear --logScale ; "%(0,max_)
bshcmd.split()
process = subprocess.Popen(bshcmd, universal_newlines=True, shell=True,
stdout=sys.stdout, stderr=sys.stdout)
outs, errs = process.communicate()
from dipy.align.reslice import reslice
def density_map(streamlines, affine, vol_dims):
affine = np.array(affine, dtype=float)
inv_affine = np.linalg.inv(affine)
lin_T = inv_affine[:3, :3].T.copy()
offset = inv_affine[:3, 3] + .5
counts = np.zeros(vol_dims, 'int')
i,j,k = 0,0,0
for sl in streamlines:
try:
inds = np.dot(sl, lin_T)
inds += offset
if inds.min().round(decimals=6) < 0:
print(inds)
continue
else:
i, j, k = inds.T.astype(int)
counts[i, j, k] += 1
except Exception as err:
print(i,j,k)
print(err)
return counts
def split_segments_age(trk_path, nifti, selected_list, f_path=my_f_path, dens=None, type_="prob", path_prefix="", separator="_"):
print("segments")
selected_seg_list = [{} for tt in selected_list]
for ise, selected_segments in enumerate(selected_list):
new_dens = np.zeros_like(dens).astype(float)
if selected_segments=={}:
return None
for roi, value in selected_segments.items():
roi = roi.replace("(","").replace(")","").replace("'","").replace(" ","")
bdle = separator.join(roi.split(separator)[:-2])
seg = roi.split(separator)[-2]
if not (bdle in selected_seg_list[ise].keys()):
selected_seg_list[ise][bdle] = {}
selected_seg_list[ise][bdle][seg] = value
print("",file=open("/auto/home/users/d/r/drimez/afq.txt","w"))
print("Density")
dens = [None for _ in selected_seg_list]
for selected_seg, ise in zip(selected_seg_list,["FA","MD","AD","RD"]):
path_prefix_ = "" if path_prefix is None else path_prefix + "_"
path_1 = "/auto/home/users/d/r/drimez/Classify_results/%s/"%type_ + path_prefix_ + "significant_" + ise
path_2 = "/auto/home/users/d/r/drimez/Classify_results/%s/"%type_ + path_prefix_ + "unsignificant_" + ise
if not os.path.exists("/auto/home/users/d/r/drimez/Classify_results/%s/"%type_ + path_prefix + "/ant_results_light_%s.png"%ise):
if not os.path.exists(path_2):
vol_dims = None ; affine = None ; dens = None ; save_affine = None
with os.scandir(trk_path) as iterator:
for entry in iterator:
print(entry.name)
if "trk" in entry.name.split("."):
new_entry_name = entry.name.replace(".trk","").replace("_","")
print(new_entry_name)
if new_entry_name in selected_seg.keys():
streamlines = load_trk(entry.path,nifti)
trk, streamlines = reorient(streamlines, nifti, trk_type=type_)
if trk is None:
print(new_entry_name,"not found")
else:
img, affine, vox_sizes = load_nifti(nifti, return_voxsize=True)
new_vox_sizes = np.array([___/4 for ___ in vox_sizes])
vol_dims = np.array([img.shape[0]*4,img.shape[1]*4,img.shape[2]*4]).flatten()
_, affine = reslice(img, affine, vox_sizes, new_vox_sizes)
# affine[:3,-1] += new_vox_sizes*np.array([_/4 for _ in vol_dims])*affine[:3,-1]/abs(affine[:3,-1])
# print(np.linalg.inv(affine),file=open("/auto/home/users/d/r/drimez/afq.txt","a"))
"""
save_affine = copy.copy(affine)
# affine[:3,:3] *= (np.ones((3,3)) - np.eye(3)*(3/4))
affine[:3,:3] /= (np.ones((3,3)) + np.eye(3)*3)
affine[:3,-1] += (np.ones((3,3)) + np.eye(3)*3)
save_affine[:3,:3] *= (np.ones((3,3)) + np.eye(3)*3)
print(affine)
"""
sl_size = len(streamlines)
this_sl = streamlines
n_seg = len([0 for _ in pd.read_csv("/auto/home/users/d/r/drimez/data_all_prob.csv").columns.values if _.split(",")[0][2:-1]==new_entry_name and _.split(",")[-1][2:-2]=="FA"])
lengths = length(this_sl) ; mean_length = None
if not isinstance(lengths,np.ndarray):
mean_length = lengths
lengths = np.array([lengths])
else:
standard = this_sl[np.argmin(abs(lengths-np.quantile(lengths,0.625)))] # sets reference streamline to the mid-second-quartile length (long enough to be in the bundle, short enough to be "straight")
this_sl = orient_by_streamline(this_sl, standard, n_points=100) # reorient streamlines for correct estimation of mean bundle
mean_length = np.mean(lengths)
seglen = mean_length/n_seg
print(sl_size,np.array([len(this_) for this_ in this_sl]).min(),mean_length,n_seg)
new_sl = None ; centroids = None
if len(this_sl)!=0:
if isinstance(this_sl[0],list) or isinstance(this_sl[0],np.ndarray):
if not (isinstance(this_sl[0][0],list) or isinstance(this_sl[0][0],np.ndarray)): # it is not a list of streamlines but a single streamline
this_sl = [this_sl]
if len(this_sl)>1:
new_sl_tg = _resample_tg(trk,1 + 2*n_seg)
new_sl = np.array(new_sl_tg)
centroids = np.mean(new_sl[:,1::2],0) # centrers of segments
elif len(this_sl)>50:
temp_tg = StatefulTractogram.from_sft( this_sl, trk)
new_sl_tg = np.array(_resample_tg(temp_tg,1 + 2*n_seg))
this_prof_weights = gaussian_weights(new_sl_tg, n_points=n_seg)
new_sl = np.array(new_sl_tg)
centroids = np.mean((new_sl*this_prof_weights)[:,1::2],0) # centrers of segments
else:
this_sl = [this_sl]
temp_tg = StatefulTractogram.from_sft( this_sl, trk)
new_sl_tg = _resample_tg(temp_tg,1 + 2*n_seg)
new_sl = np.array([new_sl_tg])
centroids = new_sl[0,1::2] # centrers of segments
lengths_ = [np.linalg.norm(end__-start__) for end__, start__ in zip(np.mean(new_sl[:,::2],0)[:-1],np.mean(new_sl[:,::2],0)[1:])] # start and ends of segments
assignments_ = []
for s in this_sl:
assignments_.append([np.argmin([np.linalg.norm(si-centroid) for centroid in centroids]) for si in s])
new_sl = None
seg_sl_assignments = assignments_
segments = [[] for nnn_seg in range(n_seg)]
for assigned_sl in range(len(streamlines)):
split_sl = this_sl[assigned_sl]
for nnn_seg in range(n_seg):
to_append = split_sl[np.array(seg_sl_assignments[assigned_sl])==nnn_seg]
if len(to_append)>0:
if not (isinstance(to_append[0],list) or isinstance(to_append[0],np.ndarray)):
to_append = [to_append]
to_append = [_ for _ in to_append if len(_)>0]
if len(to_append)>0:
segments[nnn_seg].append(to_append)
for iseg, segment in enumerate(segments):
if str(iseg) in [*selected_seg[new_entry_name].keys()]:
tdm = density_map(segment, affine, vol_dims)
if dens is None:
dens = tdm*selected_seg[new_entry_name][str(iseg)]/sl_size
else:
dens += tdm*selected_seg[new_entry_name][str(iseg)]/sl_size
print("fsleyes")
new_1 = copy.copy(dens)
new_1[dens<0] = 0
min_1, max_1 = np.abs([new_1.min(),new_1.max()])
new_2 = copy.copy(dens)
new_2[dens>0] = 0
new_2 = -new_2
min_2, max_2 = np.abs([new_2.min(),new_2.max()])
max_ = np.max([max_1,max_2])
print(max_,file=open("/auto/home/users/d/r/drimez/afq.txt","a"))
if not os.path.isdir("/auto/home/users/d/r/drimez/Classify_results/%s/"%type_):
os.makedirs("/auto/home/users/d/r/drimez/Classify_results/%s/"%type_)
save_nifti(path_1+".nii.gz",new_1, affine)
save_nifti(path_2+".nii.gz",new_2, affine)
t1_path = "/CECI/proj/pilab/PermeableAccess/vertige_LEWuQhzYs9/elikopy_subset_new2/PROJECT/subjects/C_1/T1/C_1_T1_corr_projected"
# bshcmd = "cp " + t1_path + ".nii.gz /auto/home/users/d/r/drimez/Classify_results/%s/ ; "%type_
t1_path = "/auto/home/users/d/r/drimez/Classify_results/%s_old/C_1_T1_corr_projected"%type_
bshcmd = "cd /auto/home/users/d/r/drimez/Classify_results/%s/ ; "%type_
bshcmd += "fsleyes render --scene ortho --size 2000 2000 --crop 20 -of " + path_prefix + "/results_ortho_%s.png --hideCursor "%ise + t1_path + " -a 40 "
bsh = copy.copy(bshcmd)
bsh.split()
process = subprocess.Popen(bsh, universal_newlines=True, shell=True,
stdout=sys.stdout, stderr=sys.stdout)
outs, errs = process.communicate()
if max_1>0:
bshcmd += path_1 + " -cm red-yellow -a 20 -dr %s %s -in linear "%(0,max_)
if max_2>0:
bshcmd += path_2 + " -cm blue-lightblue -a 50 -dr %s %s -in linear ; "%(0,max_)
bshcmd.split()
process = subprocess.Popen(bshcmd, universal_newlines=True, shell=True,
stdout=sys.stdout, stderr=sys.stdout)
outs, errs = process.communicate()
bshcmd = "cd /auto/home/users/d/r/drimez/Classify_results/%s/ ; "%type_
bshcmd += "fsleyes render --scene lightbox --size 8000 8000 --hideCursor --crop 20 -zx X -ss 2 -nr 20 -nc 5 -of " + path_prefix + "/side_results_light_%s.png "%ise + t1_path + " -a 40 " + path_1 + " -cm red-yellow -a 20 -dr %s %s -in linear "%(0,max_) + path_2 + " -cm blue-lightblue -a 50 -dr %s %s -in linear ; "%(0,max_)
bshcmd.split()
process = subprocess.Popen(bshcmd, universal_newlines=True, shell=True,
stdout=sys.stdout, stderr=sys.stdout)
outs, errs = process.communicate()
bshcmd = "cd /auto/home/users/d/r/drimez/Classify_results/%s/ ; "%type_
bshcmd += "fsleyes render --scene lightbox --size 8000 8000 --hideCursor --crop 20 -zx Y -ss 3 -nr 20 -nc 5 -of " + path_prefix + "/ant_results_light_%s.png "%ise + t1_path + " -a 40 " + path_1 + " -cm red-yellow -a 20 -dr %s %s -in linear "%(0,max_) + path_2 + " -cm blue-lightblue -a 50 -dr %s %s -in linear ; "%(0,max_)
# bshcmd += "rm /auto/home/users/d/r/drimez/Classify_results/%s/%s.nii.gz ; "%(type_,t1_path)
bshcmd += "rm %s.nii.gz %s.nii.gz ; "%(path_1,path_2)
bshcmd.split()
process = subprocess.Popen(bshcmd, universal_newlines=True, shell=True,
stdout=sys.stdout, stderr=sys.stdout)
outs, errs = process.communicate()
def split_segments(trk_path, nifti, selected_list, f_path=my_f_path, dens=None, type_="prob", folder__="", path_prefix="", separator="_"):
print("segments")
print(selected_list)
selected_seg_list = [{} for tt in selected_list]
separator = "_" if len(selected_seg_list)==2 else ","
for ise, selected_segments in enumerate(selected_list):
new_dens = np.zeros_like(dens).astype(float)
if selected_segments=={}:
return None
for roi, value in selected_segments.items():
roi = roi.replace("(","").replace(")","").replace("'","").replace(" ","")
bdle = separator.join(roi.split(separator)[:-2])
seg = roi.split(separator)[-2]
if not (bdle in selected_seg_list[ise].keys()):
selected_seg_list[ise][bdle] = {}
selected_seg_list[ise][bdle][seg] = value
print("",file=open("/auto/home/users/d/r/drimez/afq_1.txt","w"))
print("Density")
dens = [None for _ in selected_seg_list] ; metrics = ["pc0","pc1"] if len(selected_seg_list)==2 else ["FA","MD","AD","RD"]
for selected_seg, ise in zip(selected_seg_list,metrics):
path_prefix_ = "" if path_prefix is None else path_prefix + "_"
folder = path_prefix_ + folder__
path_1 = "/auto/home/users/d/r/drimez/Classify_results/%s/"%type_ + folder + "significant_" + ise
path_2 = "/auto/home/users/d/r/drimez/Classify_results/%s/"%type_ + folder + "unsignificant_" + ise
if not os.path.exists("/auto/home/users/d/r/drimez/Classify_results/%s/"%type_ + folder + "/ant_results_light_%s.png"%ise) and selected_seg!={}:
to_pass = False
if not os.path.exists(path_2):
vol_dims = None ; affine = None ; dens = None ; save_affine = None
with os.scandir(trk_path) as iterator:
for entry in iterator:
print(entry.name)
if "trk" in entry.name.split("."):
new_entry_name = entry.name.replace(".trk","").replace("_"+ise,"")[1:]
print(new_entry_name)
if np.any([len(new_entry_name.split(____))==2 for ____ in selected_seg.keys()]):
streamlines = load_trk(entry.path,nifti)
trk, streamlines = reorient(streamlines, nifti, trk_type=type_)
if trk is None:
print(new_entry_name,"not found")
else:
try:
img, affine, vox_sizes = load_nifti(nifti, return_voxsize=True)
new_vox_sizes = np.array([___/4 for ___ in vox_sizes])
vol_dims = np.array([img.shape[0]*4,img.shape[1]*4,img.shape[2]*4]).flatten()
_, affine = reslice(img, affine, vox_sizes, new_vox_sizes)
# affine[:3,-1] += new_vox_sizes*np.array([_/4 for _ in vol_dims])*affine[:3,-1]/abs(affine[:3,-1])
# print(np.linalg.inv(affine),file=open("/auto/home/users/d/r/drimez/afq.txt","a"))
"""
save_affine = copy.copy(affine)
# affine[:3,:3] *= (np.ones((3,3)) - np.eye(3)*(3/4))
affine[:3,:3] /= (np.ones((3,3)) + np.eye(3)*3)
affine[:3,-1] += (np.ones((3,3)) + np.eye(3)*3)
save_affine[:3,:3] *= (np.ones((3,3)) + np.eye(3)*3)
print(affine)
"""
this_sl = [np.array(sl_) for sl_ in streamlines if (len(sl_)>=2 and (isinstance(sl_[0],list) or isinstance(sl_[0],np.ndarray)) )]
sl_size = len(this_sl)
print(sl_size)
n_seg = len([0 for _ in pd.read_csv("/auto/home/users/d/r/drimez/data_all_prob.csv").columns.values if len(_.split(new_entry_name))==2 and _.split(",")[-1][2:-2]=="FA"])
lengths = length(this_sl) ; mean_length = None ; this_sl = np.array(this_sl)
if not isinstance(lengths,np.ndarray):
mean_length = lengths
lengths = np.array([lengths])
else:
standard = this_sl[np.argmin(abs(lengths-np.quantile(lengths,0.625)))] # sets reference streamline to the mid-second-quartile length (long enough to be in the bundle, short enough to be "straight")
this_sl = orient_by_streamline(this_sl, standard, n_points=100) # reorient streamlines for correct estimation of mean bundle
mean_length = np.mean(lengths)
seglen = mean_length/n_seg
print(mean_length,n_seg)
new_sl = None ; centroids = None
if len(this_sl)!=0:
if isinstance(this_sl[0],list) or isinstance(this_sl[0],np.ndarray):
if not (isinstance(this_sl[0][0],list) or isinstance(this_sl[0][0],np.ndarray)): # it is not a list of streamlines but a single streamline
this_sl = [this_sl]
if len(this_sl)>50:
temp_tg = StatefulTractogram.from_sft( this_sl, trk)
new_sl_tg = _resample_tg(temp_tg,1 + 2*n_seg)
this_prof_weights = gaussian_weights(new_sl_tg, n_points=n_seg)
new_sl = np.array(new_sl_tg)
centroids = np.mean((new_sl*this_prof_weights)[:,1::2],0) # centers of segments
elif len(this_sl)>1:
trk = StatefulTractogram.from_sft( this_sl, trk)
new_sl_tg = _resample_tg(trk,1 + 2*n_seg)
new_sl = np.array(new_sl_tg)
centroids = np.mean(new_sl[:,1::2],0) # centers of segments
else:
this_sl = [this_sl]
temp_tg = StatefulTractogram.from_sft( this_sl, trk)
new_sl_tg = _resample_tg(temp_tg,1 + 2*n_seg)
new_sl = np.array([new_sl_tg])
centroids = new_sl[0,1::2] # centrers of segments
lengths_ = [np.linalg.norm(end__-start__) for end__, start__ in zip(np.mean(new_sl[:,::2],0)[:-1],np.mean(new_sl[:,::2],0)[1:])] # start and ends of segments
assignments_ = []
for s in this_sl:
assignments_.append([np.argmin([np.linalg.norm(si-centroid) for centroid in centroids]) for si in s])
new_sl = None
seg_sl_assignments = assignments_
segments = [[] for nnn_seg in range(n_seg)]
for assigned_sl in range(sl_size):
split_sl = this_sl[assigned_sl]
for nnn_seg in range(n_seg):
to_append = split_sl[np.array(seg_sl_assignments[assigned_sl])==nnn_seg]
if len(to_append)>0:
if not (isinstance(to_append[0],list) or isinstance(to_append[0],np.ndarray)):
to_append = [to_append]
to_append = [_ for _ in to_append if len(_)>0]
if len(to_append)>0:
segments[nnn_seg].append(to_append)
for iseg, segment in enumerate(segments):
if str(iseg) in [*selected_seg[new_entry_name].keys()]:
tdm = density_map(segment, affine, vol_dims)
if dens is None:
dens = tdm*selected_seg[new_entry_name][str(iseg)]/sl_size
else:
dens += tdm*selected_seg[new_entry_name][str(iseg)]/sl_size
except Exception as err_:
raise
if not (dens is None):
new_1 = copy.copy(dens)
new_1[dens<0] = 0
min_1, max_1 = np.abs([new_1.min(),new_1.max()])
new_2 = copy.copy(dens)
new_2[dens>0] = 0
new_2 = -new_2
new_2 += new_1
min_2, max_2 = np.abs([new_2.min(),new_2.max()])
max_ = np.max([max_1,max_2])
print(max_,file=open("/auto/home/users/d/r/drimez/afq_1.txt","a"))
if not os.path.isdir("/auto/home/users/d/r/drimez/Classify_results/%s/"%type_):
os.makedirs("/auto/home/users/d/r/drimez/Classify_results/%s/"%type_)
save_nifti(path_1+".nii.gz",new_1, affine)
save_nifti(path_2+".nii.gz",new_2, affine)
else:
to_pass = True
if not to_pass:
print("fsleyes")
t1_path = "/CECI/proj/pilab/PermeableAccess/vertige_LEWuQhzYs9/elikopy_subset_new2/PROJECT/subjects/C_1/T1/C_1_T1_corr_projected"
bshcmd = "cp " + t1_path + ".nii.gz /auto/home/users/d/r/drimez/Classify_results/%s/ ; "%type_
t1_path = "/auto/home/users/d/r/drimez/Classify_results/%s_old/C_1_T1_corr_projected"%type_
bshcmd = "cd /auto/home/users/d/r/drimez/Classify_results/%s/ ; "%type_
if not os.path.isdir("/auto/home/users/d/r/drimez/Classify_results/%s/%s/"%(type_,folder)):
os.makedirs("/auto/home/users/d/r/drimez/Classify_results/%s/%s/"%(type_,folder))
bshcmd += "fsleyes render --scene ortho --size 2000 2000 --crop 20 -of " + folder + "/results_ortho_%s.png --hideCursor "%ise + t1_path + " -a 40 "
bsh = copy.copy(bshcmd)
bsh.split()
process = subprocess.Popen(bsh, universal_newlines=True, shell=True,
stdout=sys.stdout, stderr=sys.stdout)
outs, errs = process.communicate()
if max_1>0:
bshcmd += path_1 + " -cm blue-lightblue -a 50 -dr %s %s -in linear "%(0,max_)
if max_2>0:
bshcmd += path_2 + " -cm red-yellow -a 70 -dr %s %s -in linear --logScale ; "%(0,max_)
bshcmd.split()
process = subprocess.Popen(bshcmd, universal_newlines=True, shell=True,
stdout=sys.stdout, stderr=sys.stdout)
outs, errs = process.communicate()
bshcmd = "cd /auto/home/users/d/r/drimez/Classify_results/%s/ ; "%type_
bshcmd += "fsleyes render --scene lightbox --size 8000 8000 --hideCursor --crop 20 -zx X -ss 2 -nr 20 -nc 5 -of " + folder + "/side_results_light_%s.png "%ise + t1_path + " -a 40 " + path_1 + " -cm blue-lightblue -a 50 -dr %s %s -in linear "%(0,max_) + path_2 + " -cm red-yellow -a 70 -dr %s %s -in linear --logScale ; "%(0,max_)
bshcmd.split()
process = subprocess.Popen(bshcmd, universal_newlines=True, shell=True,
stdout=sys.stdout, stderr=sys.stdout)
outs, errs = process.communicate()
bshcmd = "cd /auto/home/users/d/r/drimez/Classify_results/%s/ ; "%type_
bshcmd += "fsleyes render --scene lightbox --size 8000 8000 --hideCursor --crop 20 -zx Y -ss 3 -nr 20 -nc 5 -of " + folder + "/ant_results_light_%s.png "%ise + t1_path + " -a 40 " + path_1 + " -cm blue-lightblue -a 50 -dr %s %s -in linear "%(0,max_) + path_2 + " -cm red-yellow -a 70 -dr %s %s -in linear --logScale ; "%(0,max_)
# bshcmd += "rm /auto/home/users/d/r/drimez/Classify_results/%s/%s.nii.gz ; "%(type_,t1_path)
bshcmd += "rm %s.nii.gz %s.nii.gz ; "%(path_1,path_2)
bshcmd.split()
process = subprocess.Popen(bshcmd, universal_newlines=True, shell=True,
stdout=sys.stdout, stderr=sys.stdout)
outs, errs = process.communicate()
def selection(path, data_type, pval, n_roi=10000):
thresh = 0.001 if len(path.split("wmparc"))==2 else 0.0001
selected_features = [] ; neg_selected_features = [] ; less_than_10 = [] ; neg_less_than_10 = [] ; perfs = []
metrics = ["pc0","pc1"] if "pca" in data_type.split("_") else ["FA","MD","AD","RD"]
for feature_type in metrics:
selected_features.append({}) ; neg_selected_features.append({}) ; less_than_10.append({}) ; neg_less_than_10.append({}) ; success_list_dir = []
if os.path.isdir(path) and len(path.split(data_type))>=2:
list_dir = [] ; print(path)
with os.scandir(path) as _:
for __ in _:
list_dir.append(__.path)
reliable_perfs = None
for file_path in list_dir:
if len(file_path.split("reliable"))==2 and (not len(file_path.split("unreliable"))==2) \
and np.any([True if len(_file_.split("results"))==2 else False for _file_ in list_dir]):
reliable_perfs = pd.read_csv( file_path, sep="},", skiprows=0,
names=["fitted params","perfs"]).drop_duplicates()
this_params = []
for this_par in reliable_perfs.values[1:,0]:
params_string = ""
for par_name, params_val in zip([_.split(": ")[0] for _ in (this_par+"}").replace("{","").replace("}","").split(", ")],
[_.split(": ")[1] for _ in (this_par+"}").replace("{","").replace("}","").split(", ")]):
params_string += str(par_name) + "=" + str(params_val) + "_"
this_params.append(params_string)
results_folder = np.array([True if len(_file_.split("results"))==2 else False for _file_ in list_dir])
success_folder = np.array(list_dir)[results_folder]
if isinstance(success_folder,list) or isinstance(success_folder,np.ndarray):
success_folder = success_folder[0]
success_file = os.listdir(success_folder) ; pvalues = [] ; temp_success_list_dir = []
for __pval in success_file:
for a_param in this_params:
if str(__pval).replace(".txt","").replace("b'","").replace("'","")==a_param.replace("'",""):
temp_success_list_dir.append(success_folder+"/"+str(__pval).replace("b'","").replace("'",""))
pvalues.append(pd.read_csv(success_folder+"/"+str(__pval).replace("b'","").replace("'","")).values[2,-1])
print(pvalues)
for par, lign, pvalue, file__ in zip(reliable_perfs.values[1:,0], reliable_perfs.values[1:,1],pvalues,temp_success_list_dir):
if pvalue<=0.06:
perf_metrics = {key:float(val) for key, val in zip([_.split(": ")[0].replace("'","") for _ in lign.replace("{","").replace("}","").split(", ")],
[_.split(": ")[1].replace("'","") for _ in lign.replace("{","").replace("}","").split(", ")]) }
perfs.append(perf_metrics)
success_list_dir.append(file__)
print(perfs)
print(success_list_dir)
for mask, success_file in enumerate(success_list_dir):
results = pd.read_csv(success_file)
if np.sum(results["true_mean"].values.flatten()>=thresh)<=n_roi:
imp = results["true_mean"].values
ten_or_less = False
if np.sum(imp>0)<=10:
ten_or_less = True
for name, lign in zip(results.values[:,0].flatten(),results["true_mean"].values.flatten()):
if len(name.split(feature_type))==2:
diff_type = pval.values[:,1][pval.values[:,0]==name]
sign = 1 if np.any(diff_type<=0.05) else -1
if lign>=thresh:
if not name in selected_features[-1].keys():
selected_features[-1][name] = sign*lign*float(perfs[mask]["mean_test_balanced_accuracy"])
else:
selected_features[-1][name] += sign*lign*float(perfs[mask]["mean_test_balanced_accuracy"])
if ten_or_less:
if not name in less_than_10[-1].keys():
less_than_10[-1][name] = sign*lign*float(perfs[mask]["mean_test_balanced_accuracy"])
else:
less_than_10[-1][name] += sign*lign*float(perfs[mask]["mean_test_balanced_accuracy"])
elif lign<=-thresh:
if not name in neg_selected_features[-1].keys():
neg_selected_features[-1][name] = sign*lign*float(perfs[mask]["mean_test_balanced_accuracy"])
else:
neg_selected_features[-1][name] += sign*lign*float(perfs[mask]["mean_test_balanced_accuracy"])
if ten_or_less:
if not name in neg_less_than_10[-1].keys():
neg_less_than_10[-1][name] = sign*lign*float(perfs[mask]["mean_test_balanced_accuracy"])
else:
neg_less_than_10[-1][name] += sign*lign*float(perfs[mask]["mean_test_balanced_accuracy"])
return selected_features, neg_selected_features, less_than_10, neg_less_than_10
def select_age(path, wmparc_path, path_prefix="age"):
age_coeffs = pd.read_csv(path,sep=": ").dropna()
selected_features = [{} for i in range(4)]
for name, coeff in age_coeffs.values:
if len(name.split("FA"))==2 and not len(name.split("std"))==2:
selected_features[0][name.split("'")[3]] = float(coeff)
elif len(name.split("MD"))==2 and not len(name.split("std"))==2:
selected_features[1][name.split("'")[3]] = float(coeff)
elif len(name.split("AD"))==2 and not len(name.split("std"))==2:
selected_features[2][name.split("'")[3]] = float(coeff)
elif len(name.split("RD"))==2 and not len(name.split("std"))==2:
selected_features[3][name.split("'")[3]] = float(coeff)
wmparc, affine = load_nifti(wmparc_path)
LUT = pd.read_csv("/auto/home/users/d/r/drimez/LUT.txt",sep=" ",header=None,index_col=False,names=["id","name","r","g","b","a"])
names = np.array([_ for _ in LUT["name"].values])
lut_index = np.arange(len(LUT["id"].values))
new_wmparc = np.zeros_like(wmparc).astype(float)
selected_features_list = selected_features
for selected_features, ise in zip(selected_features_list,["FA","MD","AD","RD"]):
for roi, value in selected_features.items():
corresponding = lut_index[np.array(names==roi)]
# corresponding = corresponding[0]
label = LUT["id"].values[corresponding]
new_wmparc[wmparc==label] = value
if not os.path.isdir("/auto/home/users/d/r/drimez/Classify_results/wmparc/"):
os.makedirs("/auto/home/users/d/r/drimez/Classify_results/wmparc/")