-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMy_forest.py
1128 lines (1021 loc) · 45.8 KB
/
My_forest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 28 18:50:43 2022
@author: rimez
"""
import numbers
from warnings import catch_warnings, simplefilter, warn
import threading
from sklearn.ensemble._forest import *
from abc import ABCMeta, abstractmethod
import numpy as np
from scipy.sparse import issparse
from scipy.sparse import hstack as sparse_hstack
from joblib import Parallel
from sklearn.base import is_classifier
from sklearn.base import ClassifierMixin, MultiOutputMixin, RegressorMixin
from sklearn.metrics import accuracy_score, r2_score
from sklearn.preprocessing import OneHotEncoder
from sklearn.tree import (
DecisionTreeClassifier,
DecisionTreeRegressor,
ExtraTreeClassifier,
ExtraTreeRegressor,
)
from sklearn.tree._tree import DTYPE, DOUBLE
from sklearn.utils import check_random_state, compute_sample_weight, deprecated
from sklearn.exceptions import DataConversionWarning
from sklearn.ensemble._base import BaseEnsemble, _partition_estimators
from sklearn.utils.fixes import delayed
from sklearn.utils.fixes import _joblib_parallel_args
from sklearn.utils.multiclass import check_classification_targets, type_of_target
from sklearn.utils.validation import check_is_fitted, _check_sample_weight
from sklearn.utils.validation import _num_samples
MAX_INT = np.iinfo(np.int32).max
def _get_n_samples_bootstrap(n_samples, max_samples):
"""
Get the number of samples in a bootstrap sample.
Parameters
----------
n_samples : int
Number of samples in the dataset.
max_samples : int or float
The maximum number of samples to draw from the total available:
- if float, this indicates a fraction of the total and should be
the interval `(0.0, 1.0]`;
- if int, this indicates the exact number of samples;
- if None, this indicates the total number of samples.
Returns
-------
n_samples_bootstrap : int
The total number of samples to draw for the bootstrap sample.
"""
if max_samples is None:
return n_samples
if isinstance(max_samples, numbers.Integral):
if not (1 <= max_samples <= n_samples):
msg = "`max_samples` must be in range 1 to {} but got value {}"
raise ValueError(msg.format(n_samples, max_samples))
return max_samples
if isinstance(max_samples, numbers.Real):
if not (0 < max_samples <= 1):
msg = "`max_samples` must be in range (0.0, 1.0] but got value {}"
raise ValueError(msg.format(max_samples))
return round(n_samples * max_samples)
msg = "`max_samples` should be int or float, but got type '{}'"
raise TypeError(msg.format(type(max_samples)))
def _generate_sample_indices(random_state, n_samples,
n_samples_bootstrap, class_fractions, y):
"""
Private function used to _parallel_build_trees function."""
random_instance = check_random_state(random_state)
sample_indices = [] ; size_ = []
ratio = [len(y)/np.sum(y==class_) for iclass_, class_ in enumerate(np.unique(y))] if class_fractions is None else class_fractions
ratio = np.array(ratio)/len(np.unique(y))
ratio /= (ratio.sum())
ratio = np.ceil(ratio*n_samples_bootstrap)
for i_class, class_ in enumerate(np.unique(y)):
size_.append(int(ratio[i_class]))
while np.sum(size_)!=n_samples_bootstrap:
if np.sum(size_)>=n_samples_bootstrap:
size_[np.argmax(size_)] -= 1
else:
size_[np.argmin(size_)] += 1
for iclass_, class_ in enumerate(np.unique(y)):
class_indices = random_instance.randint(0, int(np.sum(y.flatten()==class_)), size_[iclass_])
sample_indices = np.append(sample_indices,np.arange(len(y.flatten()))[y.flatten()==class_][class_indices]).astype(np.int32)
return sample_indices
def _generate_unsampled_indices(random_state, n_samples, n_samples_bootstrap, class_fractions, y):
"""
Private function used to forest._set_oob_score function."""
sample_indices = _generate_sample_indices(
random_state, n_samples, n_samples_bootstrap, class_fractions, y
)
sample_counts = np.bincount(sample_indices, minlength=n_samples)
unsampled_mask = sample_counts == 0
indices_range = np.arange(n_samples)
unsampled_indices = indices_range[unsampled_mask]
return unsampled_indices
def _parallel_build_trees(
tree,
forest,
X,
y,
sample_weight,
tree_idx,
n_trees,
verbose=0,
class_weight=None,
n_samples_bootstrap=None,
class_fractions=None,
):
"""
Private function used to fit a single tree in parallel."""
if verbose > 1:
print("building tree %d of %d" % (tree_idx + 1, n_trees))
if forest.bootstrap:
n_samples = X.shape[0]
if sample_weight is None:
curr_sample_weight = np.ones((n_samples,), dtype=np.float64)
else:
curr_sample_weight = sample_weight.copy()
indices = _generate_sample_indices(
tree.random_state, n_samples, n_samples_bootstrap, class_fractions, y
)
sample_counts = np.bincount(indices, minlength=n_samples)
curr_sample_weight *= sample_counts
if class_weight == "subsample":
with catch_warnings():
simplefilter("ignore", DeprecationWarning)
curr_sample_weight *= compute_sample_weight("auto", y, indices=indices)
elif class_weight == "balanced_subsample":
curr_sample_weight *= compute_sample_weight("balanced", y, indices=indices)
tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
else:
tree.fit(X, y, sample_weight=sample_weight, check_input=False)
return tree
class BaseForest(MultiOutputMixin, BaseEnsemble, metaclass=ABCMeta):
"""
Base class for forests of trees.
Warning: This class should not be used directly. Use derived classes
instead.
"""
@abstractmethod
def __init__(
self,
base_estimator,
n_estimators=100,
*,
estimator_params=tuple(),
bootstrap=False,
oob_score=False,
n_jobs=None,
random_state=None,
verbose=0,
warm_start=False,
class_weight=None,
max_samples=None,
):
super().__init__(
base_estimator=base_estimator,
n_estimators=n_estimators,
estimator_params=estimator_params,
)
self.bootstrap = bootstrap
self.oob_score = oob_score
self.n_jobs = n_jobs
self.random_state = random_state
self.verbose = verbose
self.warm_start = warm_start
self.class_weight = class_weight
self.max_samples = max_samples
def apply(self, X):
"""
Apply trees in the forest to X, return leaf indices.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, its dtype will be converted to
``dtype=np.float32``. If a sparse matrix is provided, it will be
converted into a sparse ``csr_matrix``.
Returns
-------
X_leaves : ndarray of shape (n_samples, n_estimators)
For each datapoint x in X and for each tree in the forest,
return the index of the leaf x ends up in.
"""
X = self._validate_X_predict(X)
results = Parallel(
n_jobs=self.n_jobs,
verbose=self.verbose,
**_joblib_parallel_args(prefer="threads"),
)(delayed(tree.apply)(X, check_input=False) for tree in self.estimators_)
return np.array(results).T
def decision_path(self, X):
"""
Return the decision path in the forest.
.. versionadded:: 0.18
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, its dtype will be converted to
``dtype=np.float32``. If a sparse matrix is provided, it will be
converted into a sparse ``csr_matrix``.
Returns
-------
indicator : sparse matrix of shape (n_samples, n_nodes)
Return a node indicator matrix where non zero elements indicates
that the samples goes through the nodes. The matrix is of CSR
format.
n_nodes_ptr : ndarray of shape (n_estimators + 1,)
The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]]
gives the indicator value for the i-th estimator.
"""
X = self._validate_X_predict(X)
indicators = Parallel(
n_jobs=self.n_jobs,
verbose=self.verbose,
**_joblib_parallel_args(prefer="threads"),
)(
delayed(tree.decision_path)(X, check_input=False)
for tree in self.estimators_
)
n_nodes = [0]
n_nodes.extend([i.shape[1] for i in indicators])
n_nodes_ptr = np.array(n_nodes).cumsum()
return sparse_hstack(indicators).tocsr(), n_nodes_ptr
def fit(self, X, y, sample_weight=None):
"""
Build a forest of trees from the training set (X, y).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Internally, its dtype will be converted
to ``dtype=np.float32``. If a sparse matrix is provided, it will be
converted into a sparse ``csc_matrix``.
y : array-like of shape (n_samples,) or (n_samples, n_outputs)
The target values (class labels in classification, real numbers in
regression).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted. Splits
that would create child nodes with net zero or negative weight are
ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any
single class carrying a negative weight in either child node.
Returns
-------
self : object
Fitted estimator.
"""
# Validate or convert input data
if issparse(y):
raise ValueError("sparse multilabel-indicator for y is not supported.")
X, y = self._validate_data(
X, y, multi_output=True, accept_sparse="csc", dtype=DTYPE
)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
if issparse(X):
# Pre-sort indices to avoid that each individual tree of the
# ensemble sorts the indices.
X.sort_indices()
y = np.atleast_1d(y)
if y.ndim == 2 and y.shape[1] == 1:
warn(
"A column-vector y was passed when a 1d array was"
" expected. Please change the shape of y to "
"(n_samples,), for example using ravel().",
DataConversionWarning,
stacklevel=2,
)
if y.ndim == 1:
# reshape is necessary to preserve the data contiguity against vs
# [:, np.newaxis] that does not.
y = np.reshape(y, (-1, 1))
if self.criterion == "poisson":
if np.any(y < 0):
raise ValueError(
"Some value(s) of y are negative which is "
"not allowed for Poisson regression."
)
if np.sum(y) <= 0:
raise ValueError(
"Sum of y is not strictly positive which "
"is necessary for Poisson regression."
)
self.n_outputs_ = y.shape[1]
y, expanded_class_weight = self._validate_y_class_weight(y)
if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
y = np.ascontiguousarray(y, dtype=DOUBLE)
if expanded_class_weight is not None:
if sample_weight is not None:
sample_weight = sample_weight * expanded_class_weight
else:
sample_weight = expanded_class_weight
if not self.bootstrap and self.max_samples is not None:
raise ValueError(
"`max_sample` cannot be set if `bootstrap=False`. "
"Either switch to `bootstrap=True` or set "
"`max_sample=None`."
)
elif self.bootstrap:
n_samples_bootstrap = _get_n_samples_bootstrap(
n_samples=X.shape[0], max_samples=self.max_samples
)
else:
n_samples_bootstrap = None
# Check parameters
self._validate_estimator()
# TODO: Remove in v1.2
if isinstance(self, (RandomForestRegressor, ExtraTreesRegressor)):
if self.criterion == "mse":
warn(
"Criterion 'mse' was deprecated in v1.0 and will be "
"removed in version 1.2. Use `criterion='squared_error'` "
"which is equivalent.",
FutureWarning,
)
elif self.criterion == "mae":
warn(
"Criterion 'mae' was deprecated in v1.0 and will be "
"removed in version 1.2. Use `criterion='absolute_error'` "
"which is equivalent.",
FutureWarning,
)
if not self.bootstrap and self.oob_score:
raise ValueError("Out of bag estimation only available if bootstrap=True")
random_state = check_random_state(self.random_state)
if not self.warm_start or not hasattr(self, "estimators_"):
# Free allocated memory, if any
self.estimators_ = []
n_more_estimators = self.n_estimators - len(self.estimators_)
if n_more_estimators < 0:
raise ValueError(
"n_estimators=%d must be larger or equal to "
"len(estimators_)=%d when warm_start==True"
% (self.n_estimators, len(self.estimators_))
)
elif n_more_estimators == 0:
warn(
"Warm-start fitting without increasing n_estimators does not "
"fit new trees."
)
else:
if self.warm_start and len(self.estimators_) > 0:
# We draw from the random state to get the random state we
# would have got if we hadn't used a warm_start.
random_state.randint(MAX_INT, size=len(self.estimators_))
trees = [
self._make_estimator(append=False, random_state=random_state)
for i in range(n_more_estimators)
]
# Parallel loop: we prefer the threading backend as the Cython code
# for fitting the trees is internally releasing the Python GIL
# making threading more efficient than multiprocessing in
# that case. However, for joblib 0.12+ we respect any
# parallel_backend contexts set at a higher level,
# since correctness does not rely on using threads.
trees = Parallel(
n_jobs=self.n_jobs,
verbose=self.verbose,
**_joblib_parallel_args(prefer="threads"),
)(
delayed(_parallel_build_trees)(
t,
self,
X,
y,
sample_weight,
i,
len(trees),
verbose=self.verbose,
class_weight=self.class_weight,
n_samples_bootstrap=n_samples_bootstrap,
)
for i, t in enumerate(trees)
)
# Collect newly grown trees
self.estimators_.extend(trees)
if self.oob_score:
y_type = type_of_target(y)
if y_type in ("multiclass-multioutput", "unknown"):
# FIXME: we could consider to support multiclass-multioutput if
# we introduce or reuse a constructor parameter (e.g.
# oob_score) allowing our user to pass a callable defining the
# scoring strategy on OOB sample.
raise ValueError(
"The type of target cannot be used to compute OOB "
f"estimates. Got {y_type} while only the following are "
"supported: continuous, continuous-multioutput, binary, "
"multiclass, multilabel-indicator."
)
self._set_oob_score_and_attributes(X, y)
# Decapsulate classes_ attributes
if hasattr(self, "classes_") and self.n_outputs_ == 1:
self.n_classes_ = self.n_classes_[0]
self.classes_ = self.classes_[0]
return self
@abstractmethod
def _set_oob_score_and_attributes(self, X, y):
"""Compute and set the OOB score and attributes.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data matrix.
y : ndarray of shape (n_samples, n_outputs)
The target matrix.
"""
def _compute_oob_predictions(self, X, y):
"""Compute and set the OOB score.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data matrix.
y : ndarray of shape (n_samples, n_outputs)
The target matrix.
Returns
-------
oob_pred : ndarray of shape (n_samples, n_classes, n_outputs) or \
(n_samples, 1, n_outputs)
The OOB predictions.
"""
# Prediction requires X to be in CSR format
if issparse(X):
X = X.tocsr()
n_samples = y.shape[0]
n_outputs = self.n_outputs_
if is_classifier(self) and hasattr(self, "n_classes_"):
# n_classes_ is a ndarray at this stage
# all the supported type of target will have the same number of
# classes in all outputs
oob_pred_shape = (n_samples, self.n_classes_[0], n_outputs)
else:
# for regression, n_classes_ does not exist and we create an empty
# axis to be consistent with the classification case and make
# the array operations compatible with the 2 settings
oob_pred_shape = (n_samples, 1, n_outputs)
oob_pred = np.zeros(shape=oob_pred_shape, dtype=np.float64)
n_oob_pred = np.zeros((n_samples, n_outputs), dtype=np.int64)
n_samples_bootstrap = _get_n_samples_bootstrap(
n_samples,
self.max_samples,
)
for estimator in self.estimators_:
unsampled_indices = _generate_unsampled_indices(
estimator.random_state,
n_samples,
n_samples_bootstrap,
)
y_pred = self._get_oob_predictions(estimator, X[unsampled_indices, :])
oob_pred[unsampled_indices, ...] += y_pred
n_oob_pred[unsampled_indices, :] += 1
for k in range(n_outputs):
if (n_oob_pred == 0).any():
warn(
"Some inputs do not have OOB scores. This probably means "
"too few trees were used to compute any reliable OOB "
"estimates.",
UserWarning,
)
n_oob_pred[n_oob_pred == 0] = 1
oob_pred[..., k] /= n_oob_pred[..., [k]]
return oob_pred
def _validate_y_class_weight(self, y):
# Default implementation
return y, None
def _validate_X_predict(self, X):
"""
Validate X whenever one tries to predict, apply, predict_proba."""
check_is_fitted(self)
X = self._validate_data(X, dtype=DTYPE, accept_sparse="csr", reset=False)
if issparse(X) and (X.indices.dtype != np.intc or X.indptr.dtype != np.intc):
raise ValueError("No support for np.int64 index based sparse matrices")
return X
@property
def feature_importances_(self):
"""
The impurity-based feature importances.
The higher, the more important the feature.
The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also
known as the Gini importance.
Warning: impurity-based feature importances can be misleading for
high cardinality features (many unique values). See
:func:`sklearn.inspection.permutation_importance` as an alternative.
Returns
-------
feature_importances_ : ndarray of shape (n_features,)
The values of this array sum to 1, unless all trees are single node
trees consisting of only the root node, in which case it will be an
array of zeros.
"""
check_is_fitted(self)
all_importances = Parallel(
n_jobs=self.n_jobs, **_joblib_parallel_args(prefer="threads")
)(
delayed(getattr)(tree, "feature_importances_")
for tree in self.estimators_
if tree.tree_.node_count > 1
)
if not all_importances:
return np.zeros(self.n_features_in_, dtype=np.float64)
all_importances = np.mean(all_importances, axis=0, dtype=np.float64)
return all_importances / np.sum(all_importances)
# TODO: Remove in 1.2
# mypy error: Decorated property not supported
@deprecated( # type: ignore
"Attribute `n_features_` was deprecated in version 1.0 and will be "
"removed in 1.2. Use `n_features_in_` instead."
)
@property
def n_features_(self):
"""Number of features when fitting the estimator."""
return self.n_features_in_
def _accumulate_prediction(predict, X, out, lock):
"""
This is a utility function for joblib's Parallel.
It can't go locally in ForestClassifier or ForestRegressor, because joblib
complains that it cannot pickle it when placed there.
"""
prediction = predict(X, check_input=False)
with lock:
if len(out) == 1:
out[0] += prediction
else:
for i in range(len(out)):
out[i] += prediction[i]
class ForestClassifier(ClassifierMixin, BaseForest, metaclass=ABCMeta):
"""
Base class for forest of trees-based classifiers.
Warning: This class should not be used directly. Use derived classes
instead.
"""
@abstractmethod
def __init__(
self,
base_estimator,
n_estimators=100,
*,
estimator_params=tuple(),
bootstrap=False,
oob_score=False,
n_jobs=None,
random_state=None,
verbose=0,
warm_start=False,
class_weight=None,
max_samples=None,
):
super().__init__(
base_estimator,
n_estimators=n_estimators,
estimator_params=estimator_params,
bootstrap=bootstrap,
oob_score=oob_score,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
warm_start=warm_start,
class_weight=class_weight,
max_samples=max_samples,
)
@staticmethod
def _get_oob_predictions(tree, X):
"""Compute the OOB predictions for an individual tree.
Parameters
----------
tree : DecisionTreeClassifier object
A single decision tree classifier.
X : ndarray of shape (n_samples, n_features)
The OOB samples.
Returns
-------
y_pred : ndarray of shape (n_samples, n_classes, n_outputs)
The OOB associated predictions.
"""
y_pred = tree.predict_proba(X, check_input=False)
y_pred = np.array(y_pred, copy=False)
if y_pred.ndim == 2:
# binary and multiclass
y_pred = y_pred[..., np.newaxis]
else:
# Roll the first `n_outputs` axis to the last axis. We will reshape
# from a shape of (n_outputs, n_samples, n_classes) to a shape of
# (n_samples, n_classes, n_outputs).
y_pred = np.rollaxis(y_pred, axis=0, start=3)
return y_pred
def _set_oob_score_and_attributes(self, X, y):
"""Compute and set the OOB score and attributes.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data matrix.
y : ndarray of shape (n_samples, n_outputs)
The target matrix.
"""
self.oob_decision_function_ = super()._compute_oob_predictions(X, y)
if self.oob_decision_function_.shape[-1] == 1:
# drop the n_outputs axis if there is a single output
self.oob_decision_function_ = self.oob_decision_function_.squeeze(axis=-1)
self.oob_score_ = accuracy_score(
y, np.argmax(self.oob_decision_function_, axis=1)
)
def _validate_y_class_weight(self, y):
check_classification_targets(y)
y = np.copy(y)
expanded_class_weight = None
if self.class_weight is not None:
y_original = np.copy(y)
self.classes_ = []
self.n_classes_ = []
y_store_unique_indices = np.zeros(y.shape, dtype=int)
for k in range(self.n_outputs_):
classes_k, y_store_unique_indices[:, k] = np.unique(
y[:, k], return_inverse=True
)
self.classes_.append(classes_k)
self.n_classes_.append(classes_k.shape[0])
y = y_store_unique_indices
if self.class_weight is not None:
valid_presets = ("balanced", "balanced_subsample")
if isinstance(self.class_weight, str):
if self.class_weight not in valid_presets:
raise ValueError(
"Valid presets for class_weight include "
'"balanced" and "balanced_subsample".'
'Given "%s".'
% self.class_weight
)
if self.warm_start:
warn(
'class_weight presets "balanced" or '
'"balanced_subsample" are '
"not recommended for warm_start if the fitted data "
"differs from the full dataset. In order to use "
'"balanced" weights, use compute_class_weight '
'("balanced", classes, y). In place of y you can use '
"a large enough sample of the full training set "
"target to properly estimate the class frequency "
"distributions. Pass the resulting weights as the "
"class_weight parameter."
)
if self.class_weight != "balanced_subsample" or not self.bootstrap:
if self.class_weight == "balanced_subsample":
class_weight = "balanced"
else:
class_weight = self.class_weight
expanded_class_weight = compute_sample_weight(class_weight, y_original)
return y, expanded_class_weight
def predict(self, X):
"""
Predict class for X.
The predicted class of an input sample is a vote by the trees in
the forest, weighted by their probability estimates. That is,
the predicted class is the one with highest mean probability
estimate across the trees.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, its dtype will be converted to
``dtype=np.float32``. If a sparse matrix is provided, it will be
converted into a sparse ``csr_matrix``.
Returns
-------
y : ndarray of shape (n_samples,) or (n_samples, n_outputs)
The predicted classes.
"""
proba = self.predict_proba(X)
if self.n_outputs_ == 1:
return self.classes_.take(np.argmax(proba, axis=1), axis=0)
else:
n_samples = proba[0].shape[0]
# all dtypes should be the same, so just take the first
class_type = self.classes_[0].dtype
predictions = np.empty((n_samples, self.n_outputs_), dtype=class_type)
for k in range(self.n_outputs_):
predictions[:, k] = self.classes_[k].take(
np.argmax(proba[k], axis=1), axis=0
)
return predictions
def predict_proba(self, X):
"""
Predict class probabilities for X.
The predicted class probabilities of an input sample are computed as
the mean predicted class probabilities of the trees in the forest.
The class probability of a single tree is the fraction of samples of
the same class in a leaf.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, its dtype will be converted to
``dtype=np.float32``. If a sparse matrix is provided, it will be
converted into a sparse ``csr_matrix``.
Returns
-------
p : ndarray of shape (n_samples, n_classes), or a list of such arrays
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
"""
check_is_fitted(self)
# Check data
X = self._validate_X_predict(X)
# Assign chunk of trees to jobs
n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs)
# avoid storing the output of every estimator by summing them here
all_proba = [
np.zeros((X.shape[0], j), dtype=np.float64)
for j in np.atleast_1d(self.n_classes_)
]
lock = threading.Lock()
Parallel(
n_jobs=n_jobs,
verbose=self.verbose,
**_joblib_parallel_args(require="sharedmem"),
)(
delayed(_accumulate_prediction)(e.predict_proba, X, all_proba, lock)
for e in self.estimators_
)
for proba in all_proba:
proba /= len(self.estimators_)
if len(all_proba) == 1:
return all_proba[0]
else:
return all_proba
def predict_log_proba(self, X):
"""
Predict class log-probabilities for X.
The predicted class log-probabilities of an input sample is computed as
the log of the mean predicted class probabilities of the trees in the
forest.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, its dtype will be converted to
``dtype=np.float32``. If a sparse matrix is provided, it will be
converted into a sparse ``csr_matrix``.
Returns
-------
p : ndarray of shape (n_samples, n_classes), or a list of such arrays
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
"""
proba = self.predict_proba(X)
if self.n_outputs_ == 1:
return np.log(proba)
else:
for k in range(self.n_outputs_):
proba[k] = np.log(proba[k])
return proba
def _more_tags(self):
return {"multilabel": True}
class My_RandomForestClassifier(ForestClassifier):
"""
A random forest classifier.
A random forest is a meta estimator that fits a number of decision tree
classifiers on various sub-samples of the dataset and uses averaging to
improve the predictive accuracy and control over-fitting.
The sub-sample size is controlled with the `max_samples` parameter if
`bootstrap=True` (default), otherwise the whole dataset is used to build
each tree.
Read more in the :ref:`User Guide <forest>`.
Parameters
----------
n_estimators : int, default=100
The number of trees in the forest.
.. versionchanged:: 0.22
The default value of ``n_estimators`` changed from 10 to 100
in 0.22.
criterion : {"gini", "entropy"}, default="gini"
The function to measure the quality of a split. Supported criteria are
"gini" for the Gini impurity and "entropy" for the information gain.
Note: this parameter is tree-specific.
max_depth : int, default=None
The maximum depth of the tree. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples.
min_samples_split : int or float, default=2
The minimum number of samples required to split an internal node:
- If int, then consider `min_samples_split` as the minimum number.
- If float, then `min_samples_split` is a fraction and
`ceil(min_samples_split * n_samples)` are the minimum
number of samples for each split.
.. versionchanged:: 0.18
Added float values for fractions.
min_samples_leaf : int or float, default=1
The minimum number of samples required to be at a leaf node.
A split point at any depth will only be considered if it leaves at
least ``min_samples_leaf`` training samples in each of the left and
right branches. This may have the effect of smoothing the model,
especially in regression.
- If int, then consider `min_samples_leaf` as the minimum number.
- If float, then `min_samples_leaf` is a fraction and
`ceil(min_samples_leaf * n_samples)` are the minimum
number of samples for each node.
.. versionchanged:: 0.18
Added float values for fractions.
min_weight_fraction_leaf : float, default=0.0
The minimum weighted fraction of the sum total of weights (of all
the input samples) required to be at a leaf node. Samples have
equal weight when sample_weight is not provided.
max_features : {"auto", "sqrt", "log2"}, int or float, default="auto"
The number of features to consider when looking for the best split:
- If int, then consider `max_features` features at each split.
- If float, then `max_features` is a fraction and
`round(max_features * n_features)` features are considered at each
split.
- If "auto", then `max_features=sqrt(n_features)`.
- If "sqrt", then `max_features=sqrt(n_features)` (same as "auto").
- If "log2", then `max_features=log2(n_features)`.
- If None, then `max_features=n_features`.
Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features.
max_leaf_nodes : int, default=None
Grow trees with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes.
min_impurity_decrease : float, default=0.0
A node will be split if this split induces a decrease of the impurity
greater than or equal to this value.
The weighted impurity decrease equation is the following::
N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)
where ``N`` is the total number of samples, ``N_t`` is the number of
samples at the current node, ``N_t_L`` is the number of samples in the
left child, and ``N_t_R`` is the number of samples in the right child.
``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
if ``sample_weight`` is passed.
.. versionadded:: 0.19
bootstrap : bool, default=True
Whether bootstrap samples are used when building trees. If False, the
whole dataset is used to build each tree.
oob_score : bool, default=False
Whether to use out-of-bag samples to estimate the generalization score.
Only available if bootstrap=True.
n_jobs : int, default=None
The number of jobs to run in parallel. :meth:`fit`, :meth:`predict`,
:meth:`decision_path` and :meth:`apply` are all parallelized over the
trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
context. ``-1`` means using all processors. See :term:`Glossary
<n_jobs>` for more details.
random_state : int, RandomState instance or None, default=None
Controls both the randomness of the bootstrapping of the samples used
when building trees (if ``bootstrap=True``) and the sampling of the
features to consider when looking for the best split at each node
(if ``max_features < n_features``).
See :term:`Glossary <random_state>` for details.
verbose : int, default=0
Controls the verbosity when fitting and predicting.
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest. See :term:`the Glossary <warm_start>`.
class_weight : {"balanced", "balanced_subsample"}, dict or list of dicts, \
default=None
Weights associated with classes in the form ``{class_label: weight}``.
If not given, all classes are supposed to have weight one. For
multi-output problems, a list of dicts can be provided in the same
order as the columns of y.
Note that for multioutput (including multilabel) weights should be
defined for each class of every column in its own dict. For example,
for four-class multilabel classification weights should be
[{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
[{1:1}, {2:5}, {3:1}, {4:1}].
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
The "balanced_subsample" mode is the same as "balanced" except that
weights are computed based on the bootstrap sample for every tree
grown.
For multi-output, the weights of each column of y will be multiplied.
Note that these weights will be multiplied with sample_weight (passed
through the fit method) if sample_weight is specified.
ccp_alpha : non-negative float, default=0.0
Complexity parameter used for Minimal Cost-Complexity Pruning. The
subtree with the largest cost complexity that is smaller than
``ccp_alpha`` will be chosen. By default, no pruning is performed. See
:ref:`minimal_cost_complexity_pruning` for details.
.. versionadded:: 0.22
max_samples : int or float, default=None
If bootstrap is True, the number of samples to draw from X
to train each base estimator.
- If None (default), then draw `X.shape[0]` samples.
- If int, then draw `max_samples` samples.
- If float, then draw `max_samples * X.shape[0]` samples. Thus,
`max_samples` should be in the interval `(0.0, 1.0]`.
.. versionadded:: 0.22
Attributes
----------
base_estimator_ : DecisionTreeClassifier
The child estimator template used to create the collection of fitted
sub-estimators.
estimators_ : list of DecisionTreeClassifier
The collection of fitted sub-estimators.
classes_ : ndarray of shape (n_classes,) or a list of such arrays
The classes labels (single output problem), or a list of arrays of
class labels (multi-output problem).