-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·215 lines (177 loc) · 8.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import copy
import glob
import os
import time
from collections import deque
import json
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.nn.utils.prune as prune
from baselines import logger
from a2c_ppo_acktr import algo, utils
from a2c_ppo_acktr.algo import gail
from a2c_ppo_acktr.arguments import get_args
from a2c_ppo_acktr.envs import make_vec_envs
from a2c_ppo_acktr.model import Policy
from a2c_ppo_acktr.storage import RolloutStorage
from evaluation import evaluate
def main():
args = get_args()
# set seeds and devices
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.set_num_threads(1)
device = torch.device("cuda:0" if args.cuda else "cpu")
log_dir = utils.default_log_init(args.log_dir, args.env_name)
save_dir = utils.default_save_init(log_dir, args.save_dir)
args_file = utils.default_args_init(log_dir, args)
threads_dir = log_dir + "threads/"
os.makedirs(threads_dir)
logger.configure(log_dir)
print(log_dir)
eval_log_dir = log_dir + "_eval"
envs = make_vec_envs(args.env_name, args.seed, args.num_processes,
args.gamma, threads_dir, device, False)
action_sample = envs.action_space.sample()
def init_alg():
actor_critic = Policy(
envs.observation_space.shape,
envs.action_space,
base_kwargs={'recurrent': args.recurrent_policy}).to(device)
agent = algo.PPO(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm,
weight_decay=args.weight_decay)
rollouts = RolloutStorage(args.num_steps, args.num_processes,
envs.observation_space.shape, envs.action_space,
actor_critic.recurrent_hidden_state_size)
return actor_critic, agent, rollouts
actor_critic, agent, rollouts = init_alg()
print(actor_critic)
print(actor_critic.num_params)
# init observations and rollouts
obs = envs.reset()
rollouts.obs[0].copy_(obs)
rollouts.to(device)
# init train loggers(not useful for the actual training, but for analysis)
episode_rewards = deque(maxlen=args.average_over)
start_time = time.time()
abs_start = start_time
min_rewards = []
max_rewards = []
mean_rewards = []
median_rewards = []
nr_episodes = []
times = []
num_total_steps = []
log_dict = {"min_rewards": min_rewards, "max_rewards": max_rewards,
"mean_rewards": mean_rewards, "median_rewards": median_rewards,
"nr_episodes": nr_episodes, "times": times, "num_total_steps": num_total_steps}
# init convergence checks and other useful variables
best_avg = -1e6
best_med = -1e6
since_improve = 0
solved = 0
epochs = int(args.num_env_steps) // args.num_steps // args.num_processes
for j in range(1, epochs + 1):
if args.use_linear_lr_decay:
# decrease learning rate linearly
utils.update_linear_schedule(
agent.optimizer, j, epochs,
agent.optimizer.lr if args.algo == "acktr" else args.lr)
for step in range(args.num_steps):
# Sample actions
with torch.no_grad():
value, action, action_log_prob, recurrent_hidden_states = actor_critic.act(
rollouts.obs[step], rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
# Obser reward and next obs
if type(action_sample) is int:
obs, reward, done, infos = envs.step(action.squeeze())
else:
obs, reward, done, infos = envs.step(action)
for info in infos:
if 'episode' in info.keys():
episode_rewards.append(info['episode']['r'])
# If done then clean the history of observations.
masks = torch.FloatTensor(
[[0.0] if done_ else [1.0] for done_ in done])
bad_masks = torch.FloatTensor(
[[0.0] if 'bad_transition' in info.keys() else [1.0]
for info in infos])
rollouts.insert(obs, recurrent_hidden_states, action,
action_log_prob, value, reward, masks, bad_masks)
with torch.no_grad():
next_value = actor_critic.get_value(
rollouts.obs[-1], rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1]).detach()
rollouts.compute_returns(next_value, args.use_gae, args.gamma,
args.gae_lambda, args.use_proper_time_limits)
value_loss, action_loss, dist_entropy = agent.update(rollouts)
rollouts.after_update()
if j % args.log_interval == 0 and len(episode_rewards) > 1:
total_num_steps = (j + 1) * args.num_processes * args.num_steps
end_time = time.time()
s_total = end_time - abs_start
print(
"Updates(epochs) {}, num timesteps {}, elapsed {:01}:{:02}:{:02.2f} epoch seconds {} \n Last {} training episodes: "
"mean/median reward {:.1f}/{:.1f},min/max reward {:.1f}/{:.1f}\n "
.format(j, total_num_steps,
int(s_total//3600), int(s_total%3600//60), s_total%60,
end_time - start_time, len(episode_rewards),
np.mean(episode_rewards), np.median(episode_rewards),
np.min(episode_rewards), np.max(episode_rewards),
dist_entropy, value_loss,
action_loss), flush=True)
min_rewards.append(np.min(episode_rewards))
max_rewards.append(np.max(episode_rewards))
mean_rewards.append(np.mean(episode_rewards))
median_rewards.append(np.median(episode_rewards))
nr_episodes.append(total_num_steps)
times.append(end_time - start_time)
num_total_steps.append(total_num_steps)
start_time = end_time
if (j % args.save_interval == 0 or j == epochs - 1) and save_dir != "":
save_path = "{}it{}_val{:.1f}.pth".format(save_dir, j, np.mean(episode_rewards))
torch.save([actor_critic, getattr(utils.get_vec_normalize(envs), 'ob_rms', None)], save_path)
print("-------Saved at path {}-------\n".format(save_path))
with open(save_dir+"it_{}_log.json".format(j),"w") as file:
json.dump(log_dict,file)
if args.convergence_its != 0:
worse = True
if best_avg < np.mean(episode_rewards):
best_avg = np.mean(episode_rewards)
since_improve = 0
worse = False
if best_med < np.median(episode_rewards):
best_med = np.median(episode_rewards)
since_improve = 0
worse = False
if worse:
since_improve += 1
if since_improve > args.convergence_its:
print("No improvements in {} iterations, best average is {}, best median is {}, stopping training"
.format(since_improve, best_avg, best_med))
save_path = "{}it{}_val{:.1f}_c.pth".format(save_dir, j, np.mean(episode_rewards))
print("Saved final model at {}".format(save_path))
torch.save([actor_critic, getattr(utils.get_vec_normalize(envs), 'ob_rms', None)], save_path)
return
if (args.eval_interval is not None and len(episode_rewards) > 1
and j % args.eval_interval == 0):
ob_rms = utils.get_vec_normalize(envs).ob_rms
evaluate(actor_critic, ob_rms, args.env_name, args.seed,
args.num_processes, eval_log_dir, device)
if __name__ == "__main__":
main()