Skip to content

Latest commit

 

History

History
61 lines (41 loc) · 2.42 KB

README.md

File metadata and controls

61 lines (41 loc) · 2.42 KB

MRI Image Augmentation and Training Tool

This project provides a tool for training a model to generate augmented MRI images, specifically focused on prostate cancer (PCa MRI).

Install packages

To install the compatible packages for the scripts, run

pip install -r requirements.txt

Training

The main.py script simplifies the training process with the following features:

  • Entry point: It acts as the main entry point for training.
  • Parameter control: Accepts various training parameters for customization, including:
    • dataset_path: Path to your MRI dataset containing normalized samples with dimension 160x160 (required)
    • epochs: Number of training epochs (default: 3000)
    • gen_learning_rate: Learning rate for the generator (default: 2e-3)
    • disc_learning_rate: Learning rate for the discriminator (default: 2e-3)
    • gen_beta_1: First momentum term for the generator optimizer (default: 0.5)
    • disc_beta_1: First momentum term for the discriminator optimizer (default: 0.5)
    • gen_beta_2: Second momentum term for the generator optimizer (default: 0.9)
    • disc_beta_2: Second momentum term for the discriminator optimizer (default: 0.999)

Example:

To train with 1000 epochs, run:

./main.py training --dataset_path {PATH_TO_DATASET} --epochs 1000 --gen_learning_rate 2e-3 --gen_beta_1 0.8 --disc_beta_1 0.8 --gen_beta_2 0.99 --disc_beta_2 0.999

Augmentation

The main.py script also facilitates generating augmented datasets:

  • Simple workflow: Requires only the image_type parameter to specify the MRI image type.
  • Accessibility: Designed to be easy to use, even for users with limited model inference experience.

Example:

To generate T2-weighted MRI augmentations (TWI), run:

./main.py inference --image_type TWI

Explanation:

  • image_type: Specifies the type of PCa MRI image to generate. Defaults to "TWI" for T2-weighted imaging. You can adjust this parameter based on your dataset.

Samples of generated images:

  • Augmented T2-Weighted Images - 1 sequence with 3 mid layers
    image image image