-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
73 lines (56 loc) · 2.81 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import argparse
import os
import sys
import itertools
import math
import datetime
import time
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torchvision import datasets
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch
import torch.nn as nn
from PIL import Image
from model import CycleGenerator, Discriminator
from lr_helpers import get_lambda_rule
from dataset import CycleGANDataset
from train import create_parser
def test_loop(opts):
if opts.image_height == 128:
res_blocks = 6
elif opts.image_height >= 256:
res_blocks = 9
transform = transforms.Compose([transforms.Resize(int(opts.image_height*1.12), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])
# Create networks
G_AB = CycleGenerator(opts.a_channels, opts.b_channels, res_blocks).to(device)
G_BA = CycleGenerator(opts.b_channels, opts.a_channels, res_blocks).to(device)
D_A = Discriminator(opts.a_channels, opts.d_conv_dim).to(device)
D_B = Discriminator(opts.b_channels, opts.d_conv_dim).to(device)
G_AB.load_state_dict(torch.load("checkpoints_cyclegan/"+opts.dataset_name+"/"+str(opts.test_epoch)+"_G_AB.pth"))
G_BA.load_state_dict(torch.load("checkpoints_cyclegan/"+opts.dataset_name+"/"+str(opts.test_epoch)+"_G_BA.pth"))
test_dataloader = DataLoader(CycleGANDataset(opts.dataset_name, transform, mode='test'), batch_size=1, shuffle=False, num_workers=1)
with torch.no_grad():
if not os.path.exists("result/" + opts.dataset_name):
os.makedirs("result/" + opts.dataset_name)
for index, batch in enumerate(test_dataloader):
real_A = Variable(batch['A'].to(device))
real_B = Variable(batch['B'].to(device))
fake_B2A = G_BA(real_B)
fake_A2B = G_AB(real_A)
rec_A, rec_B = G_BA(fake_A2B), G_AB(fake_B2A)
save_image(real_A, f"result/{opts.dataset_name}/{str(index)}_A_real.png",normalize=True)
save_image(real_B, f"result/{opts.dataset_name}/{str(index)}_B_real.png",normalize=True)
save_image(fake_A2B, f"result/{opts.dataset_name}/{str(index)}_A2B_fake.png",normalize=True)
save_image(fake_B2A, f"result/{opts.dataset_name}/{str(index)}_B2A_fake.png",normalize=True)
save_image(rec_A, f"result/{opts.dataset_name}/{str(index)}_A_rec.png",normalize=True)
save_image(rec_B, f"result/{opts.dataset_name}/{str(index)}_B_rec.png",normalize=True)
print('calculate...'+str(index))
if __name__ == '__main__':
parser = create_parser()
opts = parser.parse_args()
device = torch.device(f'cuda:{opts.gpu_id}' if torch.cuda.is_available() else 'cpu')
test_loop(opts)