-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
259 lines (215 loc) · 12.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import argparse
import itertools
import os
import time
import numpy as np
import cv2
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch
import torch.nn as nn
from params import create_parser
from dataset import AugGANDataset
from models import *
def train(opts):
device = torch.device(f'cuda:{opts.gpu_id}' if torch.cuda.is_available() else 'cpu')
# networks
E_A = Encoder().to(device)
E_B = Encoder().to(device)
H_A = HardShare().to(device)
H_B = HardShare().to(device)
S_G_AB = SoftShare().to(device)
S_P_A = SoftShare().to(device)
S_G_BA = SoftShare().to(device)
S_P_B = SoftShare().to(device)
D_G_AB = Decoder_Generator().to(device)
D_P_A = Decoder_ParsingNetworks().to(device)
D_G_BA = Decoder_Generator().to(device)
D_P_B = Decoder_ParsingNetworks().to(device)
D_A = Discriminator().to(device)
D_B = Discriminator().to(device)
# losses
criterion_gan = nn.MSELoss()
criterion_cycle = nn.L1Loss()
criterion_seg_L1 = nn.L1Loss()
criterion_seg_cross = nn.BCEWithLogitsLoss()
criterion_identity = torch.nn.L1Loss()
# optimizers
optimizer_mul = torch.optim.Adam(itertools.chain(
E_A.parameters(), H_A.parameters(),S_G_AB.parameters(),S_P_A.parameters(),D_G_AB.parameters(),D_P_A.parameters(),
E_B.parameters(), H_B.parameters(),S_G_BA.parameters(),S_P_B.parameters(),D_G_BA.parameters(),D_P_B.parameters(),
),lr=opts.lr, betas=(opts.beta1,opts.beta2))
optimizer_D_A = torch.optim.Adam(D_A.parameters(), lr=opts.lr, betas=(opts.beta1,opts.beta2))
optimizer_D_B = torch.optim.Adam(D_B.parameters(), lr=opts.lr, betas=(opts.beta1,opts.beta2))
# transform
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])
# dataloader
train_dataloader = DataLoader(AugGANDataset(opts.dataset_name, transform), batch_size=opts.batch_size, shuffle=True, num_workers=opts.n_cpu, seg_class=opts.seg_class)
val_dataloader = DataLoader(AugGANDataset(opts.dataset_name, transform, mode='val'), batch_size=5, shuffle=True, num_workers=1, seg_class=opts.seg_class)
end_epoch = opts.epochs + opts.start_epoch
total_batch = len(train_dataloader) * opts.epochs
# training
for epoch in range(opts.start_epoch, end_epoch):
start = time.time()
for index, batch in enumerate(train_dataloader):
# load images and labels
real_A = Variable(batch['A'].to(device))
real_B = Variable(batch['B'].to(device))
label_A = Variable(batch['lA'].to(device))
label_B = Variable(batch['lB'].to(device))
# Create fake_images, reconstructed_images and segmentation_pred_images
fake_A = D_G_BA(S_G_BA(H_B(E_B(real_B))))
fake_B = D_G_AB(S_G_AB(H_A(E_A(real_A))))
reconstructed_A = D_G_BA(S_G_BA(H_B(E_B(fake_B))))
reconstructed_B = D_G_AB(S_G_AB(H_A(E_A(fake_A))))
seg_A = D_P_A(S_P_A(H_A(E_A(real_A))))
seg_B = D_P_B(S_P_B(H_B(E_B(real_B))))
# backward Discriminator
real_A = Variable(batch['A'].to(device))
real_B = Variable(batch['B'].to(device))
fake_A = D_G_BA(S_G_BA(H_B(E_B(real_B))))
fake_B = D_G_AB(S_G_AB(H_A(E_A(real_A))))
# backward Discriminator A
optimizer_D_A.zero_grad()
patch_real = D_A(real_A)
loss_D_A_real = criterion_gan(patch_real, torch.tensor(1.0).expand_as(patch_real).to(device))
patch_fake = D_A(fake_A)
loss_D_A_fake = criterion_gan(patch_fake, torch.tensor(0.0).expand_as(patch_fake).to(device))
loss_D_A = loss_D_A_real + loss_D_A_fake
loss_D_A.backward(retain_graph=True)
optimizer_D_A.step()
# backward Discriminator B
optimizer_D_B.zero_grad()
patch_real = D_B(real_B)
loss_D_B_real = criterion_gan(patch_real, torch.tensor(1.0).expand_as(patch_real).to(device))
patch_fake = D_B(fake_B)
loss_D_B_fake = criterion_gan(patch_fake, torch.tensor(0.0).expand_as(patch_fake).to(device))
loss_D_B = loss_D_B_real + loss_D_B_fake
loss_D_B.backward(retain_graph=True)
optimizer_D_B.step()
# backward Multitask_networks
optimizer_mul.zero_grad()
patch_a = D_A(fake_A)
loss_gan_BA = criterion_gan(patch_a, torch.tensor(1.0).expand_as(patch_a).to(device))
patch_b = D_B(fake_B)
loss_gan_AB = criterion_gan(patch_b, torch.tensor(1.0).expand_as(patch_b).to(device))
loss_gan = loss_gan_BA + loss_gan_AB
loss_cycle_A = criterion_cycle(reconstructed_A, real_A)
loss_cycle_B = criterion_cycle(reconstructed_B, real_B)
loss_cycle = (loss_cycle_A + loss_cycle_B) * opts.lambda_cycle # 10
loss_id_a = criterion_identity(D_G_BA(S_G_BA(H_B(E_B(real_A)))), real_A)
loss_id_b = criterion_identity(D_G_AB(S_G_AB(H_A(E_A(real_B)))), real_B)
loss_identity = (loss_id_a + loss_id_b) * 5
loss_seg_cross_A = criterion_seg_cross(seg_A, label_A)
loss_seg_cross_B = criterion_seg_cross(seg_B, label_B)
loss_seg_L1_A = criterion_seg_L1(seg_A, label_A)
loss_seg_L1_B = criterion_seg_L1(seg_B, label_B)
loss_seg = (loss_seg_cross_A + loss_seg_cross_B + loss_seg_L1_A + loss_seg_L1_B) * opts.lambda_seg # undefined
# soft sharing
dot_x = 0
for param_g, param_p in zip(S_G_AB.parameters(), S_P_A.parameters()):
if len(param_g.shape) != 1:
dot_x += torch.dot(torch.flatten(param_g),torch.flatten(param_p))
else:
dot_x += torch.dot(param_g,param_p)
l2_reg_Gx = 0
for param in S_G_AB.parameters():
l2_reg_Gx += torch.norm(param)
l2_reg_Px = 0
for param in S_P_A.parameters():
l2_reg_Px += torch.norm(param)
loss_weight_sharing_x = -torch.log(dot_x/(l2_reg_Gx*l2_reg_Px))
dot_y = 0
for param_g, param_p in zip(S_G_BA.parameters(), S_P_B.parameters()):
if len(param_g.shape) != 1:
dot_y += torch.dot(torch.flatten(param_g),torch.flatten(param_p))
else:
dot_y += torch.dot(param_g,param_p)
l2_reg_Gy = 0
for param in S_G_BA.parameters():
l2_reg_Gy += torch.norm(param)
l2_reg_Py = 0
for param in S_P_B.parameters():
l2_reg_Py += torch.norm(param)
loss_weight_sharing_y = -torch.log(dot_y/(l2_reg_Gy*l2_reg_Py))
loss_weight_sharing = (loss_weight_sharing_x + loss_weight_sharing_y)* opts.lambda_ws # 0.02
# total loss
loss_mul = loss_gan + loss_cycle + loss_identity +loss_seg + loss_weight_sharing
loss_mul.backward()
optimizer_mul.step()
if index % 10 == 0:
print(f"\r[Epoch {epoch+1}/{opts.epochs-opts.start_epoch}] [Index {index}/{len(train_dataloader)}] [D_A loss: {loss_D_A.item():.4f}] [D_B loss: {loss_D_B.item():.4f}] [G loss: adv: {loss_gan.item():.4f}, loss_cycle: {loss_cycle.item():.4f}, loss_seg: {loss_seg.item():.4f}, loss_weight_sharing: {loss_weight_sharing.item():.4f}]")
# save samples
save_sample(E_A, E_B, H_A, H_B, S_G_BA, S_G_AB, D_G_BA, D_G_AB, S_P_A, S_P_B, D_P_A, D_P_B, epoch+1, opts, val_dataloader)
if epoch % opts.checkpoint_every == 0:
torch.save(E_B.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/{epoch}_E_B.pth')
torch.save(E_A.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/{epoch}_E_A.pth')
torch.save(H_B.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/{epoch}_H_B.pth')
torch.save(H_A.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/{epoch}_H_A.pth')
torch.save(S_G_BA.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/{epoch}_S_G_BA.pth')
torch.save(S_G_AB.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/{epoch}_S_G_AB.pth')
torch.save(S_P_A.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/{epoch}_S_P_A.pth')
torch.save(S_P_B.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/{epoch}_S_P_B.pth')
torch.save(D_G_BA.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/{epoch}_D_G_BA.pth')
torch.save(D_G_AB.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/{epoch}_D_G_AB.pth')
torch.save(D_P_A.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/{epoch}_D_P_A.pth')
torch.save(D_P_B.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/{epoch}_D_P_B.pth')
torch.save(E_B.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/latest_E_B.pth')
torch.save(E_A.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/latest_E_A.pth')
torch.save(H_B.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/latest_H_B.pth')
torch.save(H_A.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/latest_H_A.pth')
torch.save(S_G_BA.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/latest_S_G_BA.pth')
torch.save(S_G_AB.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/latest_S_G_AB.pth')
torch.save(S_P_A.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/latest_S_P_A.pth')
torch.save(S_P_B.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/latest_S_P_B.pth')
torch.save(D_G_BA.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/latest_D_G_BA.pth')
torch.save(D_G_AB.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/latest_D_G_AB.pth')
torch.save(D_P_A.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/latest_D_P_A.pth')
torch.save(D_P_B.state_dict(), f'{opts.checkpoint_dir}/{opts.dataset_name}/latest_D_P_B.pth')
print(f"[Epoch {epoch+1} : {time.time() - start} sec")
def save_sample(E_A, E_B, H_A, H_B, S_G_BA, S_G_AB, D_G_BA, D_G_AB, S_P_A, S_P_B, D_P_A, D_P_B, epoch, opts, val_dataloader):
device = torch.device(f'cuda:{opts.gpu_id}' if torch.cuda.is_available() else 'cpu')
images = next(iter(val_dataloader))
real_A = Variable(images['A'].to(device))
real_B = Variable(images['B'].to(device))
fake_A = D_G_BA(S_G_BA(H_B(E_B(real_B))))
fake_B = D_G_AB(S_G_AB(H_A(E_A(real_A))))
seg_A = D_P_A(S_P_A(H_A(E_A(real_A))))
seg_B = D_P_B(S_P_B(H_B(E_B(real_B))))
rec_A = D_G_BA(S_G_BA(H_B(E_B(fake_B))))
rec_B = D_G_AB(S_G_AB(H_A(E_A(fake_A))))
real_A = ((real_A-torch.min(real_A))/(torch.max(real_A)-torch.min(real_A)))*255
real_B = ((real_B-torch.min(real_B))/(torch.max(real_B)-torch.min(real_B)))*255
fake_A = ((fake_A-torch.min(fake_A))/(torch.max(fake_A)-torch.min(fake_A)))*255
fake_B = ((fake_B-torch.min(fake_B))/(torch.max(fake_B)-torch.min(fake_B)))*255
rec_A = ((rec_A-torch.min(rec_A))/(torch.max(rec_A)-torch.min(rec_A)))*255
rec_B = ((rec_B-torch.min(rec_B))/(torch.max(rec_B)-torch.min(rec_B)))*255
N, _, h, w = seg_A.shape
seg_A = seg_A.reshape(N,opts.seg_class, -1).argmax(axis=1).reshape(N, 1, h, w).repeat(1, 3, 1, 1)*10
seg_B = seg_B.reshape(N,opts.seg_class, -1).argmax(axis=1).reshape(N, 1, h, w).repeat(1, 3, 1, 1)*10
image_sample = torch.cat((real_A.data, fake_B.data, seg_A.data, rec_A.data,
real_B.data, fake_A.data, seg_B.data, rec_B.data
), 0)
save_image(image_sample, f"{opts.samples_cyclegan_dir}/{opts.dataset_name}/{epoch}.png", nrow=5,normalize=True)
def print_params(opts):
print('=' * 80)
print('Params'.center(80))
print('-' * 80)
for key in opts.__dict__:
if opts.__dict__[key]:
print('{:>30}: {:<30}'.format(key, opts.__dict__[key]).center(80))
print('=' * 80)
def main():
parser = create_parser()
opts = parser.parse_args()
os.makedirs(f"{opts.sample_dir}/{opts.dataset_name}", exist_ok=True)
os.makedirs(f"{opts.checkpoint_dir}/{opts.dataset_name}", exist_ok=True)
os.makedirs(f"{opts.samples_cyclegan_dir}/{opts.dataset_name}", exist_ok=True)
os.makedirs(f"{opts.samples_seg_dir}/{opts.dataset_name}", exist_ok=True)
print_params(opts)
train(opts)
if __name__ == '__main__':
main()