-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
204 lines (161 loc) · 6.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
import torch.nn as nn
class Encoder(nn.Module):
def __init__(self, in_channnels=3, out_channels=64):
super(Encoder, self).__init__()
self.in_channnels = in_channnels # in_channnels = 3
self.out_channels = out_channels # out_channels = 64
layers = [
nn.ReflectionPad2d(3),
nn.Conv2d(in_channnels, out_channels, kernel_size=7, padding=0),
nn.BatchNorm2d(out_channels)
]
in_channnels, out_channels = out_channels, out_channels*2 # in_channnels = 64, out_channels = 128
for i in range(2):
layers += [
nn.ReflectionPad2d(1),
nn.Conv2d(in_channnels, out_channels, kernel_size=3, stride=2, padding=0),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
]
in_channnels, out_channels = out_channels, out_channels*2
# in_channnels = 256
for i in range(3):
layers += [
ResBlock(in_channnels)
]
self.model = nn.Sequential(*layers)
self.model.apply(weights_init)
def forward(self, x):
return self.model(x)
class Generator(nn.Module):
def __init__(self, in_channnels=256, out_channels=3):
super(Generator, self).__init__()
self.in_channnels = in_channnels # in_channnels = 256
self.out_channels = out_channels # out_channels = 3 (RGB)
middle_channels = int(in_channnels/4) # middle_channels = 64
self.hard = HardShare(in_channnels)
self.soft = SoftShare(in_channnels)
self.decG = Decoder_Generator(middle_channels, out_channels)
def forward(self, x):
return self.decG(self.soft(self.hard(x)))
class ParsingNetworks(nn.Module):
def __init__(self, in_channnels=256, seg_channels=20):
super(ParsingNetworks, self).__init__()
self.in_channnels = in_channnels # in_channnels = 256
self.seg_channels = seg_channels # seg_channels = segmentation class number
middle_channels = int(in_channnels/4) # middle_channels = 64
self.hard = HardShare(in_channnels)
self.soft = SoftShare(in_channnels)
self.decS = Decoder_ParsingNetworks(middle_channels, seg_channels)
def forward(self, x):
return self.decS(self.soft(self.hard(x)))
class Discriminator(nn.Module):
def __init__(self, in_channnels=3, out_channels=64):
super(Discriminator, self).__init__()
self.in_channnels = in_channnels # in_channnels = 3 (RGB)
self.out_channels = out_channels # out_channels = 64
layers = []
for i in range(4):
layers += [
nn.Conv2d(in_channnels, out_channels, kernel_size=4, stride=2, padding=2),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(0.2, True)
]
in_channnels, out_channels = out_channels, out_channels*2
#in_channnels, out_channels = 512, 1024
layers += [
nn.Conv2d(in_channnels, in_channnels, kernel_size=4, stride=1, padding=2),
nn.BatchNorm2d(in_channnels),
nn.LeakyReLU(0.2, True)
]
layers += [
nn.Conv2d(in_channnels, 1, kernel_size=4, stride=1, padding=2)
#nn.Sigmoid()
]
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class HardShare(nn.Module):
def __init__(self, in_channnels=256):
super(HardShare, self).__init__()
self.in_channnels = in_channnels # in_channnels = 256
layers = []
for i in range(6):
layers += [
ResBlock(in_channnels)
]
self.model = nn.Sequential(*layers)
self.model.apply(weights_init)
def forward(self, x):
return self.model(x)
class SoftShare(nn.Module):
def __init__(self, in_channnels=256):
super(SoftShare, self).__init__()
self.in_channnels = in_channnels # in_channnels = 256
layers = []
for i in range(2):
layers += [
nn.ConvTranspose2d(in_channnels, int(in_channnels/2), kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(int(in_channnels/2)),
nn.ReLU(inplace=True)
]
in_channnels = int(in_channnels/2)
# in_channnels = 64
self.model = nn.Sequential(*layers)
self.model.apply(weights_init)
def forward(self, x):
return self.model(x)
class Decoder_Generator(nn.Module):
def __init__(self, in_channnels=64, out_channels=3):
super(Decoder_Generator, self).__init__()
self.in_channnels = in_channnels # in_channnels = 64
self.out_channels = out_channels # out_channels = 3
layers = [
nn.ReflectionPad2d(3),
nn.Conv2d(in_channnels, out_channels, kernel_size=7, padding=0),
nn.Tanh()
]
self.model = nn.Sequential(*layers)
self.model.apply(weights_init)
def forward(self, x):
return self.model(x)
class Decoder_ParsingNetworks(nn.Module):
def __init__(self, in_channnels=64, seg_channels=20):
super(Decoder_ParsingNetworks, self).__init__()
self.in_channnels = in_channnels # in_channnels = 64
self.seg_channels = seg_channels # out_channels = num of segmentation class
layers = [
nn.ReflectionPad2d(3),
nn.Conv2d(in_channnels, int(in_channnels/2), kernel_size=7, padding=0),
nn.BatchNorm2d(int(in_channnels/2)),
nn.ReLU(inplace=True),
nn.Conv2d(int(in_channnels/2), seg_channels, kernel_size=1)
#nn.Softmax(dim=1)
]
self.model = nn.Sequential(*layers)
self.model.apply(weights_init)
def forward(self, x):
return self.model(x)
class ResBlock(nn.Module):
def __init__(self, channnels):
super(ResBlock, self).__init__()
layers = [
nn.ReflectionPad2d(1),
nn.Conv2d(channnels, channnels, kernel_size=3, stride=1, padding=0),
nn.BatchNorm2d(channnels),
nn.ELU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(channnels, channnels, kernel_size=3, stride=1, padding=0),
nn.BatchNorm2d(channnels),
]
self.model = nn.Sequential(*layers)
def forward(self, input_data):
return input_data + self.model(input_data)
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)