This is the official codebase for scSSGC: Self-supervised graph representation learning for single-cell classification..
conda create --name scSSGC python=3.8
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
conda activate scSSGC
conda clean --all
Go to the pyg-team/pytorch_geometric page and download the following files:
Download list:
torch_scatter-2.0.8-cp39-cp39-linux_x86_64.whl
torch_sparse-0.6.12-cp39-cp39-linux_x86_64.whl
torch_cluster-1.5.9-cp39-cp39-linux_x86_64.whl
torch_spline_conv-1.2.1-cp39-cp39-linux_x86_64.whl
pip install torch_scatter-2.0.8-cp39-cp39-linux_x86_64.whl
pip install torch_sparse-0.6.12-cp39-cp39-linux_x86_64.whl
pip install torch_cluster-1.5.9-cp39-cp39-linux_x86_64.whl
pip install torch_spline_conv-1.2.1-cp39-cp39-linux_x86_64.whl
pip install torch_geometric
pip install pandas fbpca faiss-gpu annoy matplotlib numpy==1.26.4
conda activate scSSGC
# Running scSSGC
python main.py