forked from dose78/CARMA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollator.py
52 lines (45 loc) · 1.41 KB
/
collator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import sys
import glob
import csv
import numpy
import os
num_iterations = int(sys.argv[1])
output = sys.argv[2]
temp_name = output + ".tmp"
results = {}
with open(output,'rb') as data:
reader = csv.reader(data)
header = reader.next()
for row in reader:
key = ",".join(row[0:-1])
val = row[-1]
if results.has_key(key):
results[key].append(val)
else:
results[key] = [val]
with open(temp_name,'wb') as tmp:
for result in results.items():
tmp.write(result[0] + "," + ",".join(result[1])+"\n")
os.system("sort -t, -k 1,1 -k 2,2n -k 3,3n -k 4,4n -k 5,5n -k 6,6n " + temp_name + " -o " + temp_name)
measurement = header[-1]
header = header[0:-1]
header.extend(["avg", "max", "median", "min", "standard deviation"])
for i in range(1, num_iterations+1):
header.append(measurement + "_" + str(i))
with open(output,'wb') as data:
writer = csv.writer(data)
writer.writerow(header)
with open(temp_name,'rb') as tmp:
reader = csv.reader(tmp)
for row in reader:
key = row[:6]
data = row[6:]
data = map(float, data)
max_gflops = round(max(data),3)
min_gflops = round(min(data),3)
median_gflops = round(numpy.median(data),3)
avg_gflops = round(numpy.average(data),3)
std_dev = round(numpy.std(data),3)
key.extend([avg_gflops, max_gflops, median_gflops, min_gflops, std_dev])
writer.writerow(key + data)
os.system("rm -f " + temp_name)