-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathinference.py
116 lines (96 loc) · 3.88 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# -*-coding:utf-8 -*-
import grpc
import tensorflow as tf
import numpy as np
import re
from tensorflow_serving.apis import predict_pb2, prediction_service_pb2_grpc
from tensorflow.python.framework import tensor_util
from data.base_preprocess import get_instance, extract_prefix_surfix
from data.tokenizer import TokenizerBert
from tools.infer_utils import extract_entity, fix_tokens, timer, grpc_retry
MODEL = 'bert_bilstm_crf_mtl'
SERVER = 'localhost:8500'
VERSION = 1
MAX_SEQ_LEN = 150
TIMEOUT = 10
TAG2IDX = {
'[PAD]': 0,
'O': 1,
'B-ORG': 2,
'I-ORG': 3,
'B-PER': 4,
'I-PER': 5,
'B-LOC': 6,
'I-LOC': 7,
'[CLS]': 8,
'[SEP]': 9
}
class InferHelper(object):
def __init__(self, max_seq_len, tag2idx, model_name, version, server, timeout):
self.model_name = model_name
self.word_enhance, self.tokenizer_type = extract_prefix_surfix(model_name)
self.mtl = 1 if re.search('(mtl)|(adv)', model_name) else 0 # whether is multitask
self.proc = get_instance(self.tokenizer_type, max_seq_len, tag2idx,
word_enhance=self.word_enhance, mapping=None)
self.max_seq_len = max_seq_len
self.tag2idx = tag2idx
self.idx2tag = dict([(val, key) for key, val in tag2idx.items()])
self.server = server
self.version = version
self.timeout = timeout
self.channel = None
self.stub = None
self.init()
def init(self):
# This is for channel stub reuse
self.channel = grpc.insecure_channel(self.server)
self.stub = prediction_service_pb2_grpc.PredictionServiceStub(self.channel)
def make_request(self, feature):
request = predict_pb2.PredictRequest()
request.model_spec.signature_name = 'serving_default' # set in estimator output
request.model_spec.name = self.model_name
request.model_spec.version.value = self.version
tensor_proto = tensor_util.make_tensor_proto(feature, dtype=tf.string)
request.inputs['example'].CopyFrom(tensor_proto)
return request
def make_feature(self, sentence):
self.feature = self.proc.build_seq_feature(sentence)
# fake labels and label_ids, if you want to skip this you need to modify model_fn
self.feature['labels'] = np.zeros(shape=(self.max_seq_len,)).astype(str).tolist()
self.feature['label_ids'] = np.zeros(shape=(self.max_seq_len,)).astype(int).tolist()
if self.mtl:
self.feature['task_ids'] = 1
if self.tokenizer_type == TokenizerBert:
# fix word piece tokenizer UNK and ##
self.feature['tokens'] = fix_tokens(sentence, self.feature['tokens'])
tf_example = tf.train.Example(
features=tf.train.Features(feature=self.proc.build_tf_feature(self.feature))
)
return [tf_example.SerializeToString()]
def decode_prediction(self, resp):
res = resp.result().outputs
pred_ids = np.squeeze(tf.make_ndarray(res['pred_ids'])) # seq label ids
entity = extract_entity(self.feature['tokens'], pred_ids, self.idx2tag)
return entity
@grpc_retry()
def _infer(self, req):
resp = self.stub.Predict.future(req, self.timeout)
output = self.decode_prediction(resp)
return output
@timer
def infer(self, text):
feature = self.make_feature(text)
req = self.make_request(feature)
output = self._infer(req)
return output
infer_handle = None
def init_client():
global infer_handle
# For multiprocessing client, call init after fork
infer_handle = InferHelper(MAX_SEQ_LEN, TAG2IDX, MODEL, VERSION, SERVER, timeout=TIMEOUT)
if __name__ == '__main__':
print('\n Input text for inference, press Enter when finished \n')
init_client()
while True:
text = input('Input Text: ')
print(infer_handle.infer(text))