-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathevaluate_diffusers_tile.py
254 lines (208 loc) · 10.8 KB
/
evaluate_diffusers_tile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch.nn.functional as F
import math
from core.datasets_return_dict import KITTI, MpiSintel
import torch.utils.data as data
from local_diffusers.pipelines.DDPM import DDPMPipeline
import argparse
import torch
import numpy as np
from tqdm import tqdm
def compute_grid_indices(image_shape, patch_size, min_overlap=20, min_overlap_h=20):
if min_overlap_h >= patch_size[0] or min_overlap >= patch_size[1]:
raise ValueError("!!")
hs = list(range(0, image_shape[0], patch_size[0] - min_overlap_h))
ws = list(range(0, image_shape[1], patch_size[1] - min_overlap))[:5]
# Make sure the final patch is flush with the image boundary
hs[-1] = image_shape[0] - patch_size[0]
ws[-1] = image_shape[1] - patch_size[1]
# unique
hs = np.unique(hs)
# ws.append(32)
return [(h, w) for h in hs for w in ws]
def compute_weight(hws, image_shape, patch_size, sigma=1.0, wtype='gaussian'):
patch_num = len(hws)
h, w = torch.meshgrid(torch.arange(patch_size[0]), torch.arange(patch_size[1]))
h, w = h / float(patch_size[0]), w / float(patch_size[1])
c_h, c_w = 0.5, 0.5
h, w = h - c_h, w - c_w
weights_hw = (h ** 2 + w ** 2) ** 0.5 / sigma
denorm = 1 / (sigma * math.sqrt(2 * math.pi))
weights_hw = denorm * torch.exp(-0.5 * (weights_hw) ** 2)
weights = torch.zeros(1, patch_num, *image_shape)
for idx, (h, w) in enumerate(hws):
weights[:, idx, h:h + patch_size[0], w:w + patch_size[1]] = weights_hw
weights = weights.cuda()
patch_weights = []
for idx, (h, w) in enumerate(hws):
patch_weights.append(weights[:, idx:idx + 1, h:h + patch_size[0], w:w + patch_size[1]])
return patch_weights
@torch.no_grad()
def validate_kitti(pipeline, args=None, sigma=0.05, start_t=8):
IMAGE_SIZE = None
TRAIN_SIZE = [320, 448]
min_overlap = 250
pipeline.unet = pipeline.unet.to(torch.bfloat16)
val_dataset = KITTI(split='training')
val_loader = data.DataLoader(val_dataset, batch_size=1, pin_memory=True, shuffle=False, num_workers=4)
out_list, epe_list = [], []
for batch in tqdm(val_loader):
for k in batch:
if type(batch[k]) == torch.Tensor:
batch[k] = batch[k].cuda()
B, _, H, W = batch["image0"].shape
if IMAGE_SIZE is None or H != IMAGE_SIZE[0] or W != IMAGE_SIZE[1]:
print(f"replace {IMAGE_SIZE} with [{H}, {W}]")
IMAGE_SIZE = [H, W]
hws = compute_grid_indices(IMAGE_SIZE, TRAIN_SIZE, min_overlap=min_overlap)
weights = compute_weight(hws, IMAGE_SIZE, TRAIN_SIZE, sigma)
batch["image0"] = 2 * (batch["image0"] / 255.0) - 1.0
batch["image1"] = 2 * (batch["image1"] / 255.0) - 1.0
resized_image1 = F.interpolate(batch["image0"], TRAIN_SIZE, mode='bicubic', align_corners=True)
resized_image2 = F.interpolate(batch["image1"], TRAIN_SIZE, mode='bicubic', align_corners=True)
inputs = torch.cat([resized_image1, resized_image2], dim=1)
resized_flow = pipeline(
inputs=inputs.to(torch.bfloat16),
batch_size=inputs.shape[0],
num_inference_steps=args.ddpm_num_steps,
output_type="tensor",
normalize=False # false for the coarse estimation
).images.to(torch.float32)
resized_flow = F.interpolate(resized_flow, IMAGE_SIZE, mode='bicubic', align_corners=True) * \
torch.tensor([W / TRAIN_SIZE[1], H / TRAIN_SIZE[0]]).view(1, 2, 1, 1).cuda()
flows = 0
flow_count = 0
# Sample noise that we'll add to the images
noise = torch.randn(resized_flow.shape).to(resized_flow.device)
timesteps = torch.ones(B).to(resized_flow.device) * (start_t - 1)
noised_flow = pipeline.scheduler.add_noise(resized_flow, noise, timesteps.to(torch.int32))
image1_tiles = []
image2_tiles = []
noised_flow_tiles = []
for idx, (h, w) in enumerate(hws):
image1_tiles.append(batch["image0"][:, :, h:h + TRAIN_SIZE[0], w:w + TRAIN_SIZE[1]])
image2_tiles.append(batch["image1"][:, :, h:h + TRAIN_SIZE[0], w:w + TRAIN_SIZE[1]])
noised_flow_tiles.append(noised_flow[:, :, h:h + TRAIN_SIZE[0], w:w + TRAIN_SIZE[1]])
inputs = torch.cat([torch.cat(image1_tiles, dim=0), torch.cat(image2_tiles, dim=0), torch.cat(noised_flow_tiles, dim=0)], dim=1)
flow_pre_total = pipeline(
inputs=inputs.to(torch.bfloat16),
batch_size=inputs.shape[0],
num_inference_steps=args.ddpm_num_steps,
output_type="tensor",
normalize=args.normalize_range,
start_t=start_t
).images
for idx, (h, w) in enumerate(hws):
flow_pre = flow_pre_total[idx*B:(idx+1)*B]
padding = (w, IMAGE_SIZE[1] - w - TRAIN_SIZE[1], h, IMAGE_SIZE[0] - h - TRAIN_SIZE[0], 0, 0)
flows += F.pad(flow_pre * weights[idx], padding)
flow_count += F.pad(weights[idx], padding)
flow = flows / flow_count
epe = torch.sum((flow - batch['target']) ** 2, dim=1).sqrt()
mag = torch.sum(batch['target'] ** 2, dim=1).sqrt()
for index in range(B):
epe_indexed = epe[index].view(-1)
mag_indexed = mag[index].view(-1)
val = batch['valid'][index].view(-1) >= 0.5
out = ((epe_indexed > 3.0) & ((epe_indexed / mag_indexed) > 0.05)).float()
epe_list.append(epe_indexed[val].mean().cpu().item())
out_list.append(out[val].cpu().numpy())
epe_list = np.array(epe_list)
out_list = np.concatenate(out_list)
epe = np.mean(epe_list)
f1 = 100 * np.mean(out_list)
print("Validation KITTI: %f, %f" % (epe, f1))
return {'kitti-epe': epe, 'kitti-f1': f1}
@torch.no_grad()
def validate_sintel(pipeline, args=None, sigma=0.05, start_t=32):
""" Peform validation using the Sintel (train) split """
IMAGE_SIZE = None
TRAIN_SIZE = [320, 448]
min_overlap = 304
pipeline.unet = pipeline.unet.to(torch.bfloat16)
results = {}
for dstype in ['final', "clean"]:
val_dataset = MpiSintel(split='training', dstype=dstype)
val_loader = data.DataLoader(val_dataset, batch_size=args.train_batch_size, pin_memory=True, shuffle=False,
num_workers=4)
epe_list = []
for batch in tqdm(val_loader):
for k in batch:
if type(batch[k]) == torch.Tensor:
batch[k] = batch[k].cuda()
B, _, H, W = batch["image0"].shape
if IMAGE_SIZE is None or H != IMAGE_SIZE[0] or W != IMAGE_SIZE[1]:
print(f"replace {IMAGE_SIZE} with [{H}, {W}]")
IMAGE_SIZE = [H, W]
hws = compute_grid_indices(IMAGE_SIZE, TRAIN_SIZE, min_overlap=min_overlap)
weights = compute_weight(hws, IMAGE_SIZE, TRAIN_SIZE, sigma)
batch["image0"] = 2 * (batch["image0"] / 255.0) - 1.0
batch["image1"] = 2 * (batch["image1"] / 255.0) - 1.0
resized_image1 = F.interpolate(batch["image0"], TRAIN_SIZE, mode='bicubic', align_corners=True)
resized_image2 = F.interpolate(batch["image1"], TRAIN_SIZE, mode='bicubic', align_corners=True)
inputs = torch.cat([resized_image1, resized_image2], dim=1)
resized_flow = pipeline(
inputs=inputs.to(torch.bfloat16),
batch_size=inputs.shape[0],
num_inference_steps=args.ddpm_num_steps,
output_type="tensor",
normalize=False # false for the coarse estimation
).images.to(torch.float32)
resized_flow = F.interpolate(resized_flow, IMAGE_SIZE, mode='bicubic', align_corners=True) * \
torch.tensor([W / TRAIN_SIZE[1], H / TRAIN_SIZE[0]]).view(1, 2, 1, 1).cuda()
flows = 0
flow_count = 0
# Sample noise that we'll add to the images
noise = torch.randn(resized_flow.shape).to(resized_flow.device)
timesteps = torch.ones(B).to(resized_flow.device) * (start_t - 1)
noised_flow = pipeline.scheduler.add_noise(resized_flow, noise, timesteps.to(torch.int32))
image1_tiles = []
image2_tiles = []
noised_flow_tiles = []
for idx, (h, w) in enumerate(hws):
image1_tiles.append(batch["image0"][:, :, h:h + TRAIN_SIZE[0], w:w + TRAIN_SIZE[1]])
image2_tiles.append(batch["image1"][:, :, h:h + TRAIN_SIZE[0], w:w + TRAIN_SIZE[1]])
noised_flow_tiles.append(noised_flow[:, :, h:h + TRAIN_SIZE[0], w:w + TRAIN_SIZE[1]])
inputs = torch.cat(
[torch.cat(image1_tiles, dim=0), torch.cat(image2_tiles, dim=0), torch.cat(noised_flow_tiles, dim=0)],
dim=1)
flow_pre_total = pipeline(
inputs=inputs.to(torch.bfloat16),
batch_size=inputs.shape[0],
num_inference_steps=args.ddpm_num_steps,
output_type="tensor",
normalize=args.normalize_range,
start_t=start_t
).images
for idx, (h, w) in enumerate(hws):
flow_pre = flow_pre_total[idx * B:(idx + 1) * B]
padding = (w, IMAGE_SIZE[1] - w - TRAIN_SIZE[1], h, IMAGE_SIZE[0] - h - TRAIN_SIZE[0], 0, 0)
flows += F.pad(flow_pre * weights[idx], padding)
flow_count += F.pad(weights[idx], padding)
flow = flows / flow_count
epe = torch.sum((flow - batch['target']) ** 2, dim=1).sqrt()
epe_list.append(epe.view(-1).cpu().numpy())
epe_all = np.concatenate(epe_list)
epe = np.mean(epe_all)
px1 = np.mean(epe_all < 1)
px3 = np.mean(epe_all < 3)
px5 = np.mean(epe_all < 5)
print("Validation (%s) EPE: %f, 1px: %f, 3px: %f, 5px: %f" % (dstype, epe, px1, px3, px5))
results[f"{dstype}_tile"] = epe
return results
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--pipeline_path', help="restore pipeline")
parser.add_argument('--image_size', type=int, nargs='+', default=[320, 448])
parser.add_argument('--train_batch_size', type=int, default=1, help="Batch size (per device) for the training dataloader.")
parser.add_argument('--ddpm_num_steps', type=int, default=64)
parser.add_argument("--normalize_range", action="store_true",
help="Whether to normalize the flow range into [-1,1].")
parser.add_argument('--validation', type=str, nargs='+')
args = parser.parse_args()
pipeline = DDPMPipeline.from_pretrained(args.pipeline_path).to('cuda')
for val_dataset in args.validation:
results = {}
if val_dataset == 'kitti':
results.update(validate_kitti(pipeline, args=args))
elif val_dataset == 'sintel':
results.update(validate_sintel(pipeline, args=args))