forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
421 lines (349 loc) · 15.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: model.py
import numpy as np
import tensorflow as tf
from tensorpack.tfutils import get_current_tower_context
from tensorpack.tfutils.summary import add_moving_summary
from tensorpack.tfutils.argscope import argscope
from tensorpack.tfutils.scope_utils import under_name_scope
from tensorpack.models import Conv2D, FullyConnected
from utils.box_ops import pairwise_iou
import config
def rpn_head(featuremap):
with tf.variable_scope('rpn'), \
argscope(Conv2D, data_format='NCHW',
W_init=tf.random_normal_initializer(stddev=0.01)):
hidden = Conv2D('conv0', featuremap, 1024, 3, nl=tf.nn.relu)
label_logits = Conv2D('class', hidden, config.NR_ANCHOR, 1)
box_logits = Conv2D('box', hidden, 4 * config.NR_ANCHOR, 1)
# 1, NA(*4), im/16, im/16 (NCHW)
label_logits = tf.transpose(label_logits, [0, 2, 3, 1]) # 1xfHxfWxNA
label_logits = tf.squeeze(label_logits, 0) # fHxfWxNA
shp = tf.shape(box_logits) # 1x(NAx4)xfHxfW
box_logits = tf.transpose(box_logits, [0, 2, 3, 1]) # 1xfHxfWx(NAx4)
box_logits = tf.reshape(box_logits, tf.stack([shp[2], shp[3], config.NR_ANCHOR, 4])) # fHxfWxNAx4
return label_logits, box_logits
@under_name_scope()
def rpn_losses(anchor_labels, anchor_boxes, label_logits, box_logits):
"""
Args:
anchor_labels: fHxfWxNA
anchor_boxes: fHxfWxNAx4, encoded
label_logits: fHxfWxNA
box_logits: fHxfWxNAx4
Returns:
label_loss, box_loss
"""
with tf.device('/cpu:0'):
valid_mask = tf.stop_gradient(tf.not_equal(anchor_labels, -1))
pos_mask = tf.stop_gradient(tf.equal(anchor_labels, 1))
nr_valid = tf.stop_gradient(tf.count_nonzero(valid_mask), name='num_valid_anchor')
nr_pos = tf.count_nonzero(pos_mask, name='num_pos_anchor')
valid_anchor_labels = tf.boolean_mask(anchor_labels, valid_mask)
valid_label_logits = tf.boolean_mask(label_logits, valid_mask)
with tf.name_scope('label_metrics'):
valid_label_prob = tf.nn.sigmoid(valid_label_logits)
summaries = []
with tf.device('/cpu:0'):
for th in [0.5, 0.2, 0.1]:
valid_prediction = tf.cast(valid_label_prob > th, tf.int32)
prediction_corr = tf.count_nonzero(tf.equal(valid_prediction, valid_anchor_labels))
pos_prediction_corr = tf.count_nonzero(tf.logical_and(
valid_label_prob > th,
tf.equal(valid_prediction, valid_anchor_labels)))
summaries.append(tf.truediv(
pos_prediction_corr,
nr_pos, name='recall_th{}'.format(th)))
summaries.append(tf.truediv(
prediction_corr,
nr_valid, name='accuracy_th{}'.format(th)))
label_loss = tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.to_float(valid_anchor_labels), logits=valid_label_logits)
label_loss = tf.reduce_mean(label_loss, name='label_loss')
pos_anchor_boxes = tf.boolean_mask(anchor_boxes, pos_mask)
pos_box_logits = tf.boolean_mask(box_logits, pos_mask)
delta = 1.0 / 9
box_loss = tf.losses.huber_loss(
pos_anchor_boxes, pos_box_logits, delta=delta,
reduction=tf.losses.Reduction.SUM) / delta
box_loss = tf.div(
box_loss,
tf.cast(nr_valid, tf.float32), name='box_loss')
for k in [label_loss, box_loss, nr_valid, nr_pos] + summaries:
add_moving_summary(k)
return label_loss, box_loss
@under_name_scope()
def decode_bbox_target(box_predictions, anchors):
"""
Args:
box_predictions: fHxfWxNAx4, logits
anchors: fHxfWxNAx4, floatbox
Returns:
box_decoded: (fHxfWxNA)x4, float32
"""
box_pred_txtytwth = tf.reshape(box_predictions, (-1, 2, 2))
box_pred_txty, box_pred_twth = tf.split(box_pred_txtytwth, 2, axis=1)
# each is (fHxfWxNA)x1x2
anchors_x1y1x2y2 = tf.reshape(anchors, (-1, 2, 2))
anchors_x1y1, anchors_x2y2 = tf.split(anchors_x1y1x2y2, 2, axis=1)
waha = tf.to_float(anchors_x2y2 - anchors_x1y1)
xaya = tf.to_float(anchors_x2y2 + anchors_x1y1) * 0.5
wbhb = tf.exp(tf.minimum(
box_pred_twth, np.log(config.MAX_SIZE * 1.0 / config.ANCHOR_STRIDE))) * waha
xbyb = box_pred_txty * waha + xaya
x1y1 = xbyb - wbhb * 0.5
x2y2 = xbyb + wbhb * 0.5
out = tf.squeeze(tf.concat([x1y1, x2y2], axis=2), axis=1, name='output')
return out
@under_name_scope()
def encode_bbox_target(boxes, anchors):
"""
Args:
boxes: fHxfWxNAx4, float32
anchors: fHxfWxNAx4, float32
Returns:
box_encoded: fHxfWxNAx4
"""
anchors_x1y1x2y2 = tf.reshape(anchors, (-1, 2, 2))
anchors_x1y1, anchors_x2y2 = tf.split(anchors_x1y1x2y2, 2, axis=1)
waha = tf.to_float(anchors_x2y2 - anchors_x1y1)
xaya = tf.to_float(anchors_x2y2 + anchors_x1y1) * 0.5
boxes_x1y1x2y2 = tf.reshape(boxes, (-1, 2, 2))
boxes_x1y1, boxes_x2y2 = tf.split(boxes_x1y1x2y2, 2, axis=1)
wbhb = tf.to_float(boxes_x2y2 - boxes_x1y1)
xbyb = tf.to_float(boxes_x2y2 + boxes_x1y1) * 0.5
# Note that here not all boxes are valid. Some may be zero
txty = (xbyb - xaya) / waha
twth = tf.log(wbhb / waha) # may contain -inf for invalid boxes
encoded = tf.concat([txty, twth], axis=1) # (-1x2x2)
return tf.reshape(encoded, tf.shape(boxes))
@under_name_scope()
def generate_rpn_proposals(boxes, scores, img_shape):
"""
Args:
boxes: nx4 float dtype, decoded to floatbox already
scores: n float, the logits
img_shape: [h, w]
Returns:
boxes: kx4 float
scores: k logits
"""
if get_current_tower_context().is_training:
PRE_NMS_TOPK = config.TRAIN_PRE_NMS_TOPK
POST_NMS_TOPK = config.TRAIN_POST_NMS_TOPK
else:
PRE_NMS_TOPK = config.TEST_PRE_NMS_TOPK
POST_NMS_TOPK = config.TEST_POST_NMS_TOPK
@under_name_scope()
def clip_boxes(boxes, window):
boxes = tf.maximum(boxes, 0.0)
m = tf.tile(tf.reverse(window, [0]), [2]) # (4,)
boxes = tf.minimum(boxes, tf.to_float(m))
return boxes
topk = tf.minimum(PRE_NMS_TOPK, tf.size(scores))
topk_scores, topk_indices = tf.nn.top_k(scores, k=topk, sorted=False)
topk_boxes = tf.gather(boxes, topk_indices)
topk_boxes = clip_boxes(topk_boxes, img_shape)
topk_boxes_x1y1x2y2 = tf.reshape(topk_boxes, (-1, 2, 2))
topk_boxes_x1y1, topk_boxes_x2y2 = tf.split(topk_boxes_x1y1x2y2, 2, axis=1)
# nx1x2 each
wbhb = tf.squeeze(topk_boxes_x2y2 - topk_boxes_x1y1, axis=1)
valid = tf.reduce_all(wbhb > config.RPN_MIN_SIZE, axis=1) # n,
topk_valid_boxes_x1y1x2y2 = tf.boolean_mask(topk_boxes_x1y1x2y2, valid)
topk_valid_scores = tf.boolean_mask(topk_scores, valid)
topk_valid_boxes_y1x1y2x2 = tf.reshape(
tf.reverse(topk_valid_boxes_x1y1x2y2, axis=[2]),
(-1, 4), name='nms_input_boxes')
nms_indices = tf.image.non_max_suppression(
topk_valid_boxes_y1x1y2x2,
topk_valid_scores,
max_output_size=POST_NMS_TOPK,
iou_threshold=config.RPN_PROPOSAL_NMS_THRESH)
topk_valid_boxes = tf.reshape(topk_valid_boxes_x1y1x2y2, (-1, 4))
final_boxes = tf.gather(
topk_valid_boxes,
nms_indices, name='boxes')
final_scores = tf.gather(topk_valid_scores, nms_indices, name='scores')
final_probs = tf.gather(topk_valid_scores, nms_indices, name='probs')
return final_boxes, final_scores
@under_name_scope()
def sample_fast_rcnn_targets(boxes, gt_boxes, gt_labels):
"""
Args:
boxes: nx4 region proposals, floatbox
gt_boxes: mx4, floatbox
gt_labels: m, int32
Returns:
sampled_boxes: tx4 floatbox, the rois
target_boxes: tx4 encoded box, the regression target
labels: t labels
"""
@under_name_scope()
def assign_class_to_roi(iou, gt_boxes, gt_labels):
"""
Args:
iou: nxm (nr_proposal x nr_gt)
Returns:
fg_mask: n boolean, whether each roibox is fg
roi_labels: n int32, best label for each roi box
best_gt_boxes: nx4
"""
# find best gt box for each roi box
best_iou_ind = tf.argmax(iou, axis=1) # n, each in 1~m
best_iou = tf.reduce_max(iou, axis=1) # n,
best_gt_boxes = tf.gather(gt_boxes, best_iou_ind) # nx4
best_gt_labels = tf.gather(gt_labels, best_iou_ind) # n, each in 1~C
fg_mask = best_iou >= config.FASTRCNN_FG_THRESH
return fg_mask, best_gt_labels, best_gt_boxes
iou = pairwise_iou(boxes, gt_boxes) # nxm
with tf.name_scope('proposal_metrics'):
# find best roi for each gt, for summary only
best_iou = tf.reduce_max(iou, axis=0)
mean_best_iou = tf.reduce_mean(best_iou, name='best_iou_per_gt')
summaries = [mean_best_iou]
with tf.device('/cpu:0'):
for th in [0.3, 0.5]:
recall = tf.truediv(
tf.count_nonzero(best_iou >= th),
tf.size(best_iou, out_type=tf.int64),
name='recall_iou{}'.format(th))
summaries.append(recall)
add_moving_summary(*summaries)
# n, n, nx4
fg_mask, roi_labels, best_gt_boxes = assign_class_to_roi(iou, gt_boxes, gt_labels)
# don't have to add gt for training, but add it anyway
fg_inds = tf.reshape(tf.where(fg_mask), [-1])
fg_inds = tf.concat([fg_inds, tf.cast(
tf.range(tf.size(gt_labels)) + tf.shape(boxes)[0],
tf.int64)], 0)
num_fg = tf.size(fg_inds)
num_fg = tf.minimum(int(
config.FASTRCNN_BATCH_PER_IM * config.FASTRCNN_FG_RATIO),
num_fg, name='num_fg')
fg_inds = tf.slice(tf.random_shuffle(fg_inds), [0], [num_fg])
bg_inds = tf.where(tf.logical_not(fg_mask))[:, 0]
num_bg = tf.size(bg_inds)
num_bg = tf.minimum(config.FASTRCNN_BATCH_PER_IM - num_fg, num_bg, name='num_bg')
bg_inds = tf.slice(tf.random_shuffle(bg_inds), [0], [num_bg])
add_moving_summary(num_fg, num_bg)
all_boxes = tf.concat([boxes, gt_boxes], axis=0)
all_matched_gt_boxes = tf.concat([best_gt_boxes, gt_boxes], axis=0)
all_labels = tf.concat([roi_labels, gt_labels], axis=0)
ind_in_all = tf.concat([fg_inds, bg_inds], axis=0) # ind in all n+m boxes
ret_boxes = tf.gather(all_boxes, ind_in_all, name='sampled_boxes')
ret_matched_gt_boxes = tf.gather(all_matched_gt_boxes, ind_in_all)
ret_encoded_boxes = encode_bbox_target(ret_matched_gt_boxes, ret_boxes)
ret_encoded_boxes = ret_encoded_boxes * tf.constant(config.FASTRCNN_BBOX_REG_WEIGHTS)
# bg boxes will not be trained on
ret_labels = tf.concat(
[tf.gather(all_labels, fg_inds),
tf.zeros_like(bg_inds, dtype=tf.int64)], axis=0, name='sampled_labels')
return ret_boxes, tf.stop_gradient(ret_encoded_boxes), tf.stop_gradient(ret_labels)
@under_name_scope()
def roi_align(featuremap, boxes, output_shape):
"""
Args:
featuremap: 1xCxHxW
boxes: Nx4 floatbox
output_shape: int
Returns:
NxCxoHxoW
"""
@under_name_scope()
def transform_fpcoor_for_tf(boxes, image_shape, crop_shape):
"""
The way crop_and_resize works (with normalized box):
Initial point (the value of output[0]): x0_box * (W_img - 1)
Spacing: w_box * (W_img - 1) / (W_crop - 1)
Use the above grid to bilinear sample.
However, what I want is (with fpcoor box):
Spacing: w_box / W_crop
Initial point: x0_box + spacing/2 - 0.5
(-0.5 because bilinear sample assumes floating point coordinate (0.0, 0.0) is the same as pixel value (0, 0))
This function transform fpcoor boxes to a format to be used by tf.image.crop_and_resize
Returns:
y1x1y2x2
"""
x0, y0, x1, y1 = tf.split(boxes, 4, axis=1)
spacing_w = (x1 - x0) / tf.to_float(crop_shape[1])
spacing_h = (y1 - y0) / tf.to_float(crop_shape[0])
nx0 = (x0 + spacing_w / 2 - 0.5) / tf.to_float(image_shape[1] - 1)
ny0 = (y0 + spacing_h / 2 - 0.5) / tf.to_float(image_shape[0] - 1)
nw = spacing_w * tf.to_float(crop_shape[1] - 1) / tf.to_float(image_shape[1] - 1)
nh = spacing_h * tf.to_float(crop_shape[0] - 1) / tf.to_float(image_shape[0] - 1)
return tf.concat([ny0, nx0, ny0 + nh, nx0 + nw], axis=1)
image_shape = tf.shape(featuremap)[2:]
featuremap = tf.transpose(featuremap, [0, 2, 3, 1]) # to nhwc
# sample 4 locations per roi bin
boxes = transform_fpcoor_for_tf(boxes, image_shape, [output_shape * 2, output_shape * 2])
boxes = tf.stop_gradient(boxes) # TODO
ret = tf.image.crop_and_resize(
featuremap, boxes, tf.zeros([tf.shape(boxes)[0]], dtype=tf.int32),
crop_size=[output_shape * 2, output_shape * 2])
ret = tf.transpose(ret, [0, 3, 1, 2])
ret = tf.nn.avg_pool(ret, [1, 1, 2, 2], [1, 1, 2, 2], padding='SAME', data_format='NCHW')
return ret
def fastrcnn_head(feature, num_classes):
"""
Args:
feature (NxCx1x1):
num_classes(int): num_category + 1
Returns:
cls_logits (Nxnum_class), reg_logits (Nx num_class-1 x 4)
"""
with tf.variable_scope('fastrcnn'):
classification = FullyConnected(
'class', feature, num_classes,
W_init=tf.random_normal_initializer(stddev=0.01))
box_regression = FullyConnected(
'box', feature, (num_classes - 1) * 4,
W_init=tf.random_normal_initializer(stddev=0.001))
box_regression = tf.reshape(box_regression, (-1, num_classes - 1, 4))
return classification, box_regression
@under_name_scope()
def fastrcnn_predict_boxes(labels, box_logits):
"""
Args:
labels: n,
box_logits: nx(C-1)x4
Returns:
fg_ind: fg, indices into n
fg_box_logits: fgx4
"""
fg_ind = tf.reshape(tf.where(labels > 0), [-1]) # nfg,
fg_labels = tf.gather(labels, fg_ind) # nfg,
ind_2d = tf.stack([fg_ind, fg_labels - 1], axis=1) # nfgx2
# n x c-1 x 4 -> nfgx4
fg_box_logits = tf.gather_nd(box_logits, tf.stop_gradient(ind_2d))
return fg_ind, fg_box_logits
@under_name_scope()
def fastrcnn_losses(labels, boxes, label_logits, box_logits):
"""
Args:
labels: n,
boxes: nx4, encoded
label_logits: nxC
box_logits: nx(C-1)x4
"""
label_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=label_logits)
label_loss = tf.reduce_mean(label_loss, name='label_loss')
prediction = tf.argmax(label_logits, axis=1, name='label_prediction')
correct = tf.to_float(tf.equal(prediction, labels)) # boolean/integer gather is unavailable on GPU
accuracy = tf.reduce_mean(correct, name='accuracy')
# n x c-1 x 4 -> nfg x 4
fg_ind, fg_box_logits = fastrcnn_predict_boxes(labels, box_logits)
fg_boxes = tf.gather(boxes, fg_ind) # nfgx4
fg_label_pred = tf.argmax(tf.gather(label_logits, fg_ind), axis=1)
num_zero = tf.reduce_sum(tf.cast(tf.equal(fg_label_pred, 0), tf.int32), name='num_zero')
false_negative = tf.truediv(num_zero, tf.size(fg_ind), name='false_negative')
fg_correct = tf.gather(correct, fg_ind)
fg_accuracy = tf.reduce_mean(fg_correct, name='fg_accuracy')
box_loss = tf.losses.huber_loss(
fg_boxes, fg_box_logits, reduction=tf.losses.Reduction.SUM)
box_loss = tf.truediv(
box_loss, tf.to_float(tf.shape(labels)[0]), name='box_loss')
for k in [label_loss, box_loss, accuracy, fg_accuracy, false_negative]:
add_moving_summary(k)
return label_loss, box_loss